File size: 5,269 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

import os
import json

import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns


def main():
    # hyperparameters
    datasets = ["mnist", "fmnist", "cifar10"]
    EXP_NUM = 20
    selected_epochs_dict = {"mnist":[[1,2], [10,13], [16,20]],"fmnist":[[1,6],[25,30],[36,50]], "cifar10":[[1,24], [70,100],[160,200]]}
    selected_epochs_dict = {"mnist":[[2], [10], [20]],"fmnist":[[6],[25],[50]], "cifar10":[[24], [100],[200]]}
    # start
    exps = list(range(EXP_NUM))
    col = np.array(["dataset", "method", "type", "hue", "period", "eval"])
    df = pd.DataFrame({}, columns=col)
    for i in range(len(datasets)): # dataset
        dataset = datasets[i]
        data = np.array([])
        selected_epochs = selected_epochs_dict[dataset]
        
        # DeepDebugger segments
        eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset)
        with open(eval_path, "r") as f:
                eval = json.load(f)
        for epoch_id in range(3):
            stage_epochs = selected_epochs[epoch_id]
            inv_acc_train_list = list()
            inv_acc_test_list = list()
            for epoch in stage_epochs:
                ppr_train = round(eval["ppr_train"][str(epoch)], 3)
                ppr_test = round(eval["ppr_test"][str(epoch)], 3)
                inv_acc_train_list.append(ppr_train)
                inv_acc_test_list.append(ppr_test)
            ppr_train = sum(inv_acc_train_list)/len(inv_acc_train_list)
            ppr_test = sum(inv_acc_test_list)/len(inv_acc_test_list)

            if len(data) == 0:
                data = np.array([[dataset, "DeepDebugger", "Train", "DeepDebugger(Train)", "{}".format(str(epoch_id)), ppr_train]])
            else:
                data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Train", "DeepDebugger(Train)",  "{}".format(str(epoch_id)), ppr_train]])), axis=0)
            data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Test", "DeepDebugger(Test)",  "{}".format(str(epoch_id)), ppr_test]])), axis=0)
        
        # DeepDebugger Random segments
        for epoch_id in range(3):
            for exp in exps:
                eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/exp_{}/test_evaluation_hybrid.json".format(dataset, str(exp))
                with open(eval_path, "r") as f:
                        eval = json.load(f)
                stage_epochs = selected_epochs[epoch_id]
                ppr_train_list = list()
                ppr_test_list = list()
                for epoch in stage_epochs:
                    nn_train = round(eval["ppr_train"][str(epoch)], 3)
                    nn_test = round(eval["ppr_test"][str(epoch)], 3)

                    ppr_train_list.append(nn_train)
                    ppr_test_list.append(nn_test)
                nn_train = sum(ppr_train_list)/len(ppr_train_list)
                nn_test = sum(ppr_test_list)/len(ppr_test_list)

                data = np.concatenate((data, np.array([[dataset, "Random", "Train", "-OS(Train)", "{}".format(str(epoch_id)), nn_train]])), axis=0)
                data = np.concatenate((data, np.array([[dataset, "Random", "Test", "-OS(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0)

        df_tmp = pd.DataFrame(data, columns=col)
        df = df.append(df_tmp, ignore_index=True)
        df[["period"]] = df[["period"]].astype(int)
        df[["eval"]] = df[["eval"]].astype(float)

    df.to_excel("./plot_results/ablation_segment_ppr.xlsx")

    pal20c = sns.color_palette('tab20c', 20)
    sns.set_theme(style="whitegrid", palette=pal20c)
    hue_dict = {
        "-OS(Train)": pal20c[0],
        "DeepDebugger(Train)": pal20c[8],

        "-OS(Test)": pal20c[3],
        "DeepDebugger(Test)": pal20c[11],
    }
    sns.palplot([hue_dict[i] for i in hue_dict.keys()])

    axes = {'labelsize': 10,
            'titlesize': 10,}
    mpl.rc('axes', **axes)
    mpl.rcParams['xtick.labelsize'] = 10


    hue_list = ["-OS(Train)", "-OS(Test)", "DeepDebugger(Train)", "DeepDebugger(Test)"]

    fg = sns.catplot(
        x="period",
        y="eval",
        hue="hue",
        hue_order=hue_list,
        # order = [1, 2, 3, 4, 5],
        # row="method",
        col="dataset",
        ci=0.001,
        height=2.5, #2.65,
        aspect=1.0,#3,
        data=df,
        kind="box",
        palette=[hue_dict[i] for i in hue_list],
        legend=True
    )
    sns.move_legend(fg, "lower center", bbox_to_anchor=(.42, 0.92), ncol=2, title=None, frameon=False)
    mpl.pyplot.setp(fg._legend.get_texts(), fontsize='10')

    axs = fg.axes[0]
    # max_ = df_tmp["eval"].max()
    # min_ = df["eval"].min()
    # axs[0].set_ylim(0., max_*1.1)
    axs[0].set_title("MNIST")
    axs[1].set_title("FMNIST")
    axs[2].set_title("CIFAR-10")

    (fg.despine(bottom=False, right=False, left=False, top=False)
        .set_xticklabels(['Early', 'Mid', 'Late'])
        .set_axis_labels("", "")
        )
    # fg.fig.suptitle("Prediction Preserving Rate")

    fg.savefig(
        "./plot_results/ablation_segment_ppr.png",
        dpi=300,
        bbox_inches="tight",
        pad_inches=0.0,
        transparent=True,
    )


if __name__ == "__main__":
    main()