File size: 11,761 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""The Projector class for visualization, serve as a helper module for evaluator and visualizer"""
from abc import ABC, abstractmethod
import os
import json
import numpy as np
import torch

class ProjectorAbstractClass(ABC):

    @abstractmethod
    def __init__(self, vis_model, content_path, *args, **kwargs):
        pass

    @abstractmethod
    def load(self, *args, **kwargs):
        pass

    @abstractmethod
    def batch_project(self, *args, **kwargs):
        pass

    @abstractmethod
    def individual_project(self, *args, **kwargs):
        pass

    @abstractmethod
    def batch_inverse(self, *args, **kwargs):
        pass

    @abstractmethod
    def individual_inverse(self, *args, **kwargs):
        pass

class Projector(ProjectorAbstractClass):
    def __init__(self, vis_model, content_path, vis_model_name, device):
        self.vis_model = vis_model
        self.content_path = content_path
        self.vis_model_name = vis_model_name
        self.DEVICE = device
    
    def load(self, iteration):
        raise NotImplementedError
    
    def batch_project(self, iteration, data):
        self.load(iteration)
        embedding = self.vis_model.encoder(torch.from_numpy(data).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding
    
    def individual_project(self, iteration, data):
        self.load(iteration)
        embedding = self.vis_model.encoder(torch.from_numpy(np.expand_dims(data, axis=0)).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding.squeeze(axis=0)
    
    def batch_inverse(self, iteration, embedding):
        self.load(iteration)
        data = self.vis_model.decoder(torch.from_numpy(embedding).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return data
    
    def individual_inverse(self, iteration, embedding):
        self.load(iteration)
        data = self.vis_model.decoder(torch.from_numpy(np.expand_dims(embedding, axis=0)).to(dtype=torch.float32, device="cpu")).cpu().detach().numpy()
        return data.squeeze(axis=0)
    
class DeepDebuggerProjector(Projector):
    def __init__(self, vis_model, content_path, vis_model_name, segments, device):
        super().__init__(vis_model, content_path, vis_model_name, device)
        self.segments = segments
        self.segments = segments    #[(1,6),(6, 15),(15,42),(42,200)]
        self.current_range = (-1,-1)

    def load(self, iteration):
        # [s,e)
        init_e = self.segments[-1][1]
        if (iteration >= self.current_range[0] and iteration <self.current_range[1]) or (iteration == init_e and self.current_range[1] == init_e):
            print("Same range as current visualization model...")
            return 
        # else
        for i in range(len(self.segments)):
            s = self.segments[i][0]
            e = self.segments[i][1]
            # range [s,e)
            if (iteration >= s and iteration < e) or (iteration == init_e and e == init_e):
                idx = i
                break
        # TODO vis model name as a hyperparameter
        file_path = os.path.join(self.content_path, "Model", "{}_{}.pth".format(self.vis_model_name, idx))
        save_model = torch.load(file_path, map_location="cpu")
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        self.current_range = (s, e)
        print("Successfully load the visualization model for range ({},{})...".format(s,e))


class ALProjector(Projector):
    def __init__(self, vis_model, content_path, vis_model_name, device) -> None:
        super().__init__(vis_model, content_path,vis_model_name, device)
        self.current_range = None

    def load(self, iteration):
        file_path=os.path.join(self.content_path, "Model", "Iteration_{}".format(iteration), self.vis_model_name+".pth")

        save_model = torch.load(file_path, map_location=torch.device("cpu"))
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        print("Successfully load the visualization model for Iteration {}...".format(iteration))


class DenseALProjector(DeepDebuggerProjector):
    def __init__(self, vis_model, content_path, vis_model_name, device) -> None:
        super().__init__(vis_model, content_path, vis_model_name, None, device)
        self.current_range = [-1,-1,-1] # iteration, e_s, e_e

    def load(self, iteration, epoch):
        # [s,e)
        curr_iteration, curr_s, curr_e = self.current_range
        segment_path = os.path.join(self.content_path, "Model", "Iteration_{}".format(iteration), "segments.json")
        with open(segment_path, "r") as f:
            segments = json.load(f)
        init_e = segments[-1][1]
        # [s,e)
        if iteration == curr_iteration:
            if (curr_e==init_e and epoch == curr_e) or (epoch >= curr_s and epoch < curr_e):
                print("Same range as current visualization model...")
                return
        
        for i in range(len(segments)):
            s = segments[i][0]
            e = segments[i][1]
            # range [s, e)
            if (epoch >= s and epoch < e) or (e == init_e and epoch == e):
                idx = i
                break
        file_path = os.path.join(self.content_path, "Model", "Iteration_{}".format(iteration), "{}_{}.pth".format(self.vis_model_name, idx))
        save_model = torch.load(file_path, map_location=self.DEVICE)
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        self.current_range = (iteration, s, e)
        print("Successfully load the visualization model in iteration {} for range ({},{}]...".format(iteration, s,e))
    
    def batch_project(self, iteration, epoch, data):
        self.load(iteration, epoch)
        embedding = self.vis_model.encoder(torch.from_numpy(data).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding
    
    def individual_project(self, iteration, epoch, data):
        self.load(iteration, epoch)
        embedding = self.vis_model.encoder(torch.from_numpy(np.expand_dims(data, axis=0)).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding.squeeze(axis=0)
    
    def batch_inverse(self, iteration, epoch, embedding):
        self.load(iteration, epoch)
        data = self.vis_model.decoder(torch.from_numpy(embedding).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return data
    
    def individual_inverse(self, iteration, epoch, embedding):
        self.load(iteration, epoch)
        data = self.vis_model.decoder(torch.from_numpy(np.expand_dims(embedding, axis=0)).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return data.squeeze(axis=0)


class EvalProjector(DeepDebuggerProjector):
    def __init__(self, vis_model, content_path, vis_model_name, device, exp) -> None:
        super().__init__(vis_model, content_path, vis_model_name, None, device)
        self.exp = exp
        file_path = os.path.join(content_path, "Model", "{}".format(exp), "segments.json")
        with open(file_path, "r") as f:
            self.segments = json.load(f)
    
    def load(self, iteration):
        # (s, e]
        # (s,e]
        init_s = self.segments[0][0]
        if (iteration > self.current_range[0] and iteration <=self.current_range[1]) or (iteration == init_s and self.current_range[0] == init_s):
            print("Same range as current visualization model...")
            return 
        # else
        for i in range(len(self.segments)):
            s = self.segments[i][0]
            e = self.segments[i][1]
            # range (s,e]
            if (iteration > s and iteration <= e) or (iteration == init_s and s == init_s):
                idx = i
                break
        file_path = os.path.join(self.content_path, "Model", "{}".format(self.exp), "tnn_hybrid_{}.pth".format(idx))
        save_model = torch.load(file_path, map_location="cpu")
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        self.current_range = (s, e)
        print("Successfully load the visualization model for range ({},{})...".format(s,e))
        

class DVIProjector(Projector):
    def __init__(self, vis_model, content_path, vis_model_name, device) -> None:
        super().__init__(vis_model, content_path, vis_model_name, device)

    def load(self, iteration):
        file_path = os.path.join(self.content_path, "Model", "Epoch_{}".format(iteration), "{}.pth".format(self.vis_model_name))
        save_model = torch.load(file_path, map_location="cpu")
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        print("Successfully load the DVI visualization model for iteration {}".format(iteration))


class TimeVisProjector(Projector):
    def __init__(self, vis_model, content_path, vis_model_name, device, verbose=0) -> None:
        super().__init__(vis_model, content_path, vis_model_name, device)
        self.verbose = verbose

    def load(self, iteration):
        file_path = os.path.join(self.content_path, "Model", "{}.pth".format(self.vis_model_name))
        save_model = torch.load(file_path, map_location="cpu")
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        if self.verbose>0:
            print("Successfully load the TimeVis visualization model for iteration {}".format(iteration))


class TimeVisDenseALProjector(Projector):
    def __init__(self, vis_model, content_path, vis_model_name, device, verbose=0) -> None:
        super().__init__(vis_model, content_path, vis_model_name, device)
        self.verbose = verbose
        self.curr_iteration = -1

    def load(self, iteration, epoch):
        if iteration == self.curr_iteration:
            return
        file_path = os.path.join(self.content_path, "Model", f'Iteration_{iteration}', "{}.pth".format(self.vis_model_name))
        save_model = torch.load(file_path, map_location="cpu")
        self.vis_model.load_state_dict(save_model["state_dict"])
        self.vis_model.to(self.DEVICE)
        self.vis_model.eval()
        if self.verbose>0:
            print("Successfully load the TimeVis visualization model for iteration {}".format(iteration))
        self.curr_iteration = iteration
        
    
    def batch_project(self, iteration, epoch, data):
        self.load(iteration, epoch)
        embedding = self.vis_model.encoder(torch.from_numpy(data).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding
    
    def individual_project(self, iteration, epoch, data):
        self.load(iteration, epoch)
        embedding = self.vis_model.encoder(torch.from_numpy(np.expand_dims(data, axis=0)).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return embedding.squeeze(axis=0)
    
    def batch_inverse(self, iteration, epoch, embedding):
        self.load(iteration, epoch)
        data = self.vis_model.decoder(torch.from_numpy(embedding).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return data
    
    def individual_inverse(self, iteration, epoch, embedding):
        self.load(iteration, epoch)
        data = self.vis_model.decoder(torch.from_numpy(np.expand_dims(embedding, axis=0)).to(dtype=torch.float32, device=self.DEVICE)).cpu().detach().numpy()
        return data.squeeze(axis=0)