File size: 23,046 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from abc import ABC, abstractmethod

import numpy as np
import os
import time
import math
import json

from umap.umap_ import fuzzy_simplicial_set, make_epochs_per_sample
from pynndescent import NNDescent
from sklearn.neighbors import NearestNeighbors
from sklearn.utils import check_random_state

from singleVis.kcenter_greedy import kCenterGreedy
from singleVis.intrinsic_dim import IntrinsicDim
from singleVis.backend import get_graph_elements, get_attention
from singleVis.utils import find_neighbor_preserving_rate
from kmapper import KeplerMapper
from sklearn.cluster import DBSCAN
from scipy.spatial import distance
from scipy.sparse import csr_matrix
import networkx as nx
from itertools import combinations
import torch
from scipy.stats import entropy
from umap import UMAP
from scipy.special import softmax
from trustVis.sampeling import Sampleing
from trustVis.data_generation import DataGeneration
from sklearn.neighbors import KernelDensity
from singleVis.utils import *
from scipy.sparse import coo_matrix

seed_value = 0

# np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)  
torch.backends.cudnn.deterministic = True  
torch.backends.cudnn.benchmark = False  

# Set the random seed for numpy
np.random.seed(seed_value)

class SpatialEdgeConstructorAbstractClass(ABC):
    @abstractmethod
    def __init__(self, data_provider) -> None:
        pass

    @abstractmethod
    def construct(self, *args, **kwargs):
        # return head, tail, weight, feature_vectors
        pass

    @abstractmethod
    def record_time(self, save_dir, file_name, operation, t):
        pass

'''Base class for Spatial Edge Constructor'''
class SpatialEdgeConstructor(SpatialEdgeConstructorAbstractClass):
    '''Construct spatial complex
    '''
    def __init__(self, data_provider, init_num, s_n_epochs, b_n_epochs, n_neighbors) -> None:
        """Init parameters for spatial edge constructor

        Parameters
        ----------
        data_provider : data.DataProvider
             data provider
        init_num : int
            init number to calculate c
        s_n_epochs : int
            the number of epochs to fit for one iteration(epoch)
            e.g. n_epochs=5 means each edge will be sampled 5*prob times in one training epoch
        b_n_epochs : int
            the number of epochs to fit boundary samples for one iteration (epoch)
        n_neighbors: int
            local connectivity
        """
        self.data_provider = data_provider
        self.init_num = init_num
        self.s_n_epochs = s_n_epochs
        self.b_n_epochs = b_n_epochs
        self.n_neighbors = n_neighbors


    
    def get_pred_diff(self, data, neibour_data, knn_indices, epoch):
        pred  = self.data_provider.get_pred(epoch, data)
        pred_n  = self.data_provider.get_pred(epoch, neibour_data)
        new_l =[]
        for i in range(len(knn_indices)):
            pred_i = pred_n[knn_indices[i]]
            pred_diff = np.mean(np.abs(pred_i - pred[i]), axis=-1) #
            
            pred_diff = np.exp(pred_diff) - 1  # amplify the difference
            new_l.append(pred_diff)

        new_l = np.array(new_l)
        return new_l

    def _construct_fuzzy_complex(self, train_data):

        print(train_data.shape)
        # """
        # construct a vietoris-rips complex
        # """
        # number of trees in random projection forest
        n_trees = min(64, 5 + int(round((train_data.shape[0]) ** 0.5 / 20.0)))
        # max number of nearest neighbor iters to perform
        n_iters = max(5, int(round(np.log2(train_data.shape[0]))))
        # distance metric
        metric = "euclidean"
        # # get nearest neighbors
        
        nnd = NNDescent(
            train_data,
            n_neighbors=self.n_neighbors,
            metric=metric,
            n_trees=n_trees,
            n_iters=n_iters,
            max_candidates=60,
            verbose=True
        )
        knn_indices, knn_dists = nnd.neighbor_graph
     

        random_state = check_random_state(None)
        complex, sigmas, rhos = fuzzy_simplicial_set(
            X=train_data,
            n_neighbors=self.n_neighbors,
            metric=metric,
            random_state=random_state,
            knn_indices=knn_indices,
            knn_dists=knn_dists
        )
        return complex, sigmas, rhos, knn_indices
    
   
    
    def _get_perturb_neibour(self,train_data,n_perturbations=10,perturbation_scale=0.04):

        # step1, find neibour for each sample
        X = train_data
        nn = NearestNeighbors(n_neighbors=self.n_neighbors)
        nn.fit(X)
        _, indices = nn.kneighbors(X)
        # 步骤2、3、4:对每个数据点和它的每个邻居生成扰动,然后将扰动应用到邻居上
       
        for i in range(X.shape[0]):
            for j in range(self.n_neighbors):
                for _ in range(n_perturbations):
                    # random perturbation
                    perturbation = np.random.normal(scale=perturbation_scale, size=X.shape[1])
                    # perturbation on neibour
                    perturbed_point = X[indices[i, j]] + perturbation
                    X_perturbed.append(perturbed_point)

        X_perturbed = np.array(X_perturbed)
    
    def _construct_sample_fuzzy_complex(self, train_data):

        n_neighbors = 2
        # """
        # construct a vietoris-rips complex
        # """
        # number of trees in random projection forest
        n_trees = min(64, 5 + int(round((train_data.shape[0]) ** 0.5 / 20.0)))
        # max number of nearest neighbor iters to perform
        n_iters = max(5, int(round(np.log2(train_data.shape[0]))))
        # distance metric
        metric = "euclidean"
        # # get nearest neighbors
        
        nnd = NNDescent(
            train_data,
            n_neighbors=n_neighbors,
            metric=metric,
            n_trees=n_trees,
            n_iters=n_iters,
            max_candidates=60,
            verbose=True
        )
        knn_indices, knn_dists = nnd.neighbor_graph
     

        random_state = check_random_state(42)
        complex, sigmas, rhos = fuzzy_simplicial_set(
            X=train_data,
            n_neighbors=n_neighbors,
            metric=metric,
            random_state=random_state,
            knn_indices=knn_indices,
            knn_dists=knn_dists
        )
        return complex, sigmas, rhos, knn_indices
    
    
    def _construct_boundary_wise_complex(self, train_data, border_centers):
        """compute the boundary wise complex
            for each border point, we calculate its k nearest train points
            for each train data, we calculate its k nearest border points
        """
        print("rrrrr",train_data.shape,border_centers.shape)
        high_neigh = NearestNeighbors(n_neighbors=self.n_neighbors, radius=0.4)
        high_neigh.fit(border_centers)
        fitting_data = np.concatenate((train_data, border_centers), axis=0)
        knn_dists, knn_indices = high_neigh.kneighbors(fitting_data, n_neighbors=self.n_neighbors, return_distance=True)
        knn_indices = knn_indices + len(train_data)

        random_state = check_random_state(42)
        bw_complex, sigmas, rhos = fuzzy_simplicial_set(
            X=fitting_data,
            n_neighbors=self.n_neighbors,
            metric="euclidean",
            random_state=random_state,
            knn_indices=knn_indices,
            knn_dists=knn_dists
        )
        return bw_complex, sigmas, rhos, knn_indices

    
    def _construct_boundary_wise_complex_skeleton(self, train_data, border_centers):
        """compute the boundary wise complex
            for each skeleton point, we calculate its k nearest train points
            for each train data, we calculate its k nearest skeleton points
        """
        print("train data:",train_data.shape, "skeleton data:",border_centers.shape)
        high_neigh = NearestNeighbors(n_neighbors=self.n_neighbors, radius=0.4)
        high_neigh.fit(border_centers)
        fitting_data = np.concatenate((train_data, border_centers), axis=0)
        knn_dists, knn_indices = high_neigh.kneighbors(fitting_data, n_neighbors=self.n_neighbors, return_distance=True)
        knn_indices = knn_indices + len(train_data)

        random_state = check_random_state(42)
        sk_complex, sigmas, rhos = fuzzy_simplicial_set(
            X=fitting_data,
            n_neighbors=self.n_neighbors,
            metric="euclidean",
            random_state=random_state,
            knn_indices=knn_indices,
            knn_dists=knn_dists
        )
        return sk_complex, sigmas, rhos, knn_indices
    
    
    def _construct_proxy_based_edge_dataset(self, proxy_complex, sample_sample, proxy_training_complex):
        """
        construct the mixed edge dataset for one time step
            connect border points and train data(both direction)
        :param vr_complex: Vietoris-Rips complex
        :param bw_complex: boundary-augmented complex
        :param n_epochs: the number of epoch that we iterate each round
        :return: edge dataset
        """
        # get data from graph
        _, pv_head, pv_tail, pv_weight, _ = get_graph_elements(proxy_complex, self.s_n_epochs)

        _, pt_head, pt_tail, pt_weight, _ = get_graph_elements(proxy_training_complex, self.s_n_epochs)

        head = np.concatenate((pv_head, pt_head), axis=0)
        tail = np.concatenate((pv_tail, pt_tail), axis=0)
        weight = np.concatenate((pv_weight, pt_weight), axis=0)
        if sample_sample != None:
            _, s_head, s_tail, s_weight, _ = get_graph_elements(sample_sample, self.s_n_epochs)
            head = np.concatenate((pv_head, pt_head,s_head), axis=0)
            tail = np.concatenate((pv_tail, pt_tail,s_tail), axis=0)
            weight = np.concatenate((pv_weight, pt_weight,s_weight), axis=0)
        return head, tail, weight


    def _construct_active_learning_step_edge_dataset(self, vr_complex, bw_complex, al_complex):
        """
        construct the mixed edge dataset for one time step
            connect border points and train data(both direction)
        :param vr_complex: Vietoris-Rips complex
        :param bw_complex: boundary-augmented complex
        :param n_epochs: the number of epoch that we iterate each round
        :return: edge dataset
        """
        # get data from graph

        _, vr_head, vr_tail, vr_weight, _ = get_graph_elements(vr_complex, self.s_n_epochs)

        _, al_head, al_tail, al_weight, _ = get_graph_elements(al_complex, self.s_n_epochs)


        # get data from graph
        if self.b_n_epochs == 0:
            return vr_head, vr_tail, vr_weight
        else:
            _, bw_head, bw_tail, bw_weight, _ = get_graph_elements(bw_complex, self.b_n_epochs)
            # bw_weight = 1.5 * bw_weight
            head = np.concatenate((vr_head, bw_head, al_head), axis=0)
            tail = np.concatenate((vr_tail, bw_tail, al_tail), axis=0)
            weight = np.concatenate((vr_weight, bw_weight, al_weight), axis=0)
        return head, tail, weight

    def _construct_step_edge_dataset(self, vr_complex, bw_complex):
        """
        construct the mixed edge dataset for one time step
            connect border points and train data(both direction)
        :param vr_complex: Vietoris-Rips complex
        :param bw_complex: augmented complex
        :param n_epochs: the number of epoch that we iterate each round
        :return: edge dataset
        """
        # get data from graph
        _, vr_head, vr_tail, vr_weight, _ = get_graph_elements(vr_complex, self.s_n_epochs)

        # get data from graph
        if bw_complex == None:
            return vr_head, vr_tail, vr_weight
        else:
            _, bw_head, bw_tail, bw_weight, _ = get_graph_elements(bw_complex, self.b_n_epochs)
            head = np.concatenate((vr_head, bw_head), axis=0)
            tail = np.concatenate((vr_tail, bw_tail), axis=0)
            weight = np.concatenate((vr_weight, bw_weight), axis=0)
        return head, tail, weight
      
    def construct(self):
        return NotImplemented
    
    def record_time(self, save_dir, file_name, operation, t):
        file_path = os.path.join(save_dir, file_name+".json")
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                ti = json.load(f)
        else:
            ti = dict()
        ti[operation] = t
        with open(file_path, "w") as f:
            json.dump(ti, f)
        


class ProxyBasedSpatialEdgeConstructor(SpatialEdgeConstructor):
    def __init__(self, data_provider, iteration, s_n_epochs, b_n_epochs, n_neighbors,model,proxy) -> None:
        super().__init__(data_provider, 100, s_n_epochs, b_n_epochs, n_neighbors)
        self.iteration = iteration
        self.model = model
        self.proxy = proxy
    def construct(self):
   
        print("Trustvis")
        # load train data and border centers
        train_data = self.data_provider.train_representation(self.iteration)
        train_data = train_data.reshape(train_data.shape[0],train_data.shape[1])
        # build proxy-proxy-connection
        proxy_proxy_complex, _, _, _ = self._construct_fuzzy_complex(self.proxy)
        # build proxy-sample-connection
        
        proxy_sample_complex, _, _, _ = self._construct_boundary_wise_complex(self.proxy, train_data)
        sample_complex, _, _, _ = self._construct_sample_fuzzy_complex(train_data)
        edge_to, edge_from, weight = self._construct_proxy_based_edge_dataset(proxy_proxy_complex, sample_complex, proxy_sample_complex)
        #### enhance the connection between the sample and its nearest proxy
        #### find nearest skeleton for each training data
        nearest_proxy_distances, nearest_proxy_indices = self._find_nearest_proxy(train_data, self.proxy)
        # #### add nearest skeleton to edge
        train_data_indices = np.arange(len(train_data))
        added_edge_from = train_data_indices + len(self.proxy)
        added_edge_to = nearest_proxy_indices.squeeze()
        # use inverse as weight
        added_weight = 1.0 / (nearest_proxy_distances.squeeze() + 1e-5)
        # add new edge
        edge_to = np.concatenate((edge_to, added_edge_to), axis=0)
        edge_from = np.concatenate((edge_from, added_edge_from), axis=0)
        weight = np.concatenate((weight, added_weight), axis=0)
    
        feature_vectors = np.concatenate((self.proxy, train_data ), axis=0)
        pred_model = self.data_provider.prediction_function(self.iteration)
        attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1)
        # attention = np.zeros(feature_vectors.shape)
            
        return edge_to, edge_from, weight, feature_vectors, attention
    
    def _find_nearest_proxy(self, train_data, proxy):
        nearest_neighbor = NearestNeighbors(n_neighbors=1).fit(proxy)
        # find nearest skeleton for each training data
        distances, indices = nearest_neighbor.kneighbors(train_data)
        return distances, indices
    
    def record_time(self, save_dir, file_name, operation, t):
        file_path = os.path.join(save_dir, file_name+".json")
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                ti = json.load(f)
        else:
            ti = dict()
        if operation not in ti.keys():
            ti[operation] = dict()
        ti[operation][str(self.iteration)] = t
        with open(file_path, "w") as f:
            json.dump(ti, f)



class OriginSingleEpochSpatialEdgeConstructor(SpatialEdgeConstructor):
    def __init__(self, data_provider, iteration, s_n_epochs, b_n_epochs, n_neighbors) -> None:
        super().__init__(data_provider, 100, s_n_epochs, b_n_epochs, n_neighbors)
        self.iteration = iteration
    
    def construct(self):
        # load train data and border centers
        train_data = self.data_provider.train_representation(self.iteration)
        # selected = np.random.choice(len(train_data), int(0.9*len(train_data)), replace=False)
        # train_data = train_data[selected]

        complex, _, _, _ = self._construct_fuzzy_complex(train_data)
        edge_to, edge_from, weight = self._construct_step_edge_dataset(complex, None)
        feature_vectors = np.copy(train_data)
        pred_model = self.data_provider.prediction_function(self.iteration)
        attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1) 
        return edge_to, edge_from, weight, feature_vectors, attention
    
    def record_time(self, save_dir, file_name, operation, t):
        file_path = os.path.join(save_dir, file_name+".json")
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                ti = json.load(f)
        else:
            ti = dict()
        if operation not in ti.keys():
            ti[operation] = dict()
        ti[operation][str(self.iteration)] = t
        with open(file_path, "w") as f:
            json.dump(ti, f)

class PredDistSingleEpochSpatialEdgeConstructor(SpatialEdgeConstructor):
    def __init__(self, data_provider, iteration, s_n_epochs, b_n_epochs, n_neighbors) -> None:
        super().__init__(data_provider, 100, s_n_epochs, b_n_epochs, n_neighbors)
        self.iteration = iteration
    
    def construct(self):
        # load train data and border centers
        train_data = self.data_provider.train_representation(self.iteration)
        # selected = np.random.choice(len(train_data), int(0.9*len(train_data)), replace=False)
        # train_data = train_data[selected]

        if self.b_n_epochs > 0:
            border_centers = self.data_provider.border_representation(self.iteration).squeeze()
            complex, _, _, _ = self._construct_fuzzy_complex(train_data, self.iteration)
            bw_complex, _, _, _ = self._construct_boundary_wise_complex(train_data, border_centers, self.iteration)
            edge_to, edge_from, weight = self._construct_step_edge_dataset(complex, bw_complex)
            feature_vectors = np.concatenate((train_data, border_centers), axis=0)
            # pred_model = self.data_provider.prediction_function(self.iteration)
            # attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1)
            attention = np.zeros(feature_vectors.shape)
        elif self.b_n_epochs == 0:
            complex, _, _, _ = self._construct_fuzzy_complex(train_data)
            edge_to, edge_from, weight = self._construct_step_edge_dataset(complex, None)
            feature_vectors = np.copy(train_data)
            # pred_model = self.data_provider.prediction_function(self.iteration)
            # attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1)            
            attention = np.zeros(feature_vectors.shape)
        else: 
            raise Exception("Illegal border edges proposion!")
            
        return edge_to, edge_from, weight, feature_vectors, attention
    
    def record_time(self, save_dir, file_name, operation, t):
        file_path = os.path.join(save_dir, file_name+".json")
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                ti = json.load(f)
        else:
            ti = dict()
        if operation not in ti.keys():
            ti[operation] = dict()
        ti[operation][str(self.iteration)] = t
        with open(file_path, "w") as f:
            json.dump(ti, f)

class ActiveLearningEpochSpatialEdgeConstructor(SpatialEdgeConstructor):
    def __init__(self, data_provider, iteration, s_n_epochs, b_n_epochs, n_neighbors, cluster_points, uncluster_points) -> None:
        super().__init__(data_provider, 100, s_n_epochs, b_n_epochs, n_neighbors)
        self.iteration = iteration
        self.cluster_points = cluster_points
        self.uncluster_points = uncluster_points
    
    def construct(self):
        # load train data and border centers
        train_data = self.data_provider.train_representation(self.iteration)
        # selected = np.random.choice(len(train_data), int(0.9*len(train_data)), replace=False)
        # train_data = train_data[selected]
        cluster_data = np.concatenate((train_data, self.cluster_points), axis=0)

        if self.b_n_epochs > 0:
            border_centers = self.data_provider.border_representation(self.iteration).squeeze()
            complex, _, _, _ = self._construct_fuzzy_complex(cluster_data)
            bw_complex, _, _, _ = self._construct_boundary_wise_complex(cluster_data, border_centers)
            if self.uncluster_points.shape[0] != 0:
                al_complex, _, _, _ = self._construct_fuzzy_complex(self.uncluster_points)
                edge_to, edge_from, weight = self._construct_active_learning_step_edge_dataset(complex, bw_complex, al_complex)
            else:
                edge_to, edge_from, weight = self._construct_active_learning_step_edge_dataset(complex, bw_complex, None)
            feature_vectors = np.concatenate((cluster_data, border_centers), axis=0)
            # pred_model = self.data_provider.prediction_function(self.iteration)
            # attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1)
            attention = np.zeros(feature_vectors.shape)
        elif self.b_n_epochs == 0:
            complex, _, _, _ = self._construct_fuzzy_complex(cluster_data)
            if self.uncluster_points.shape[0] != 0:
                al_complex, _, _, _ = self._construct_fuzzy_complex(self.uncluster_points)
                edge_to, edge_from, weight = self._construct_active_learning_step_edge_dataset(complex, bw_complex, al_complex)
            else:
                edge_to, edge_from, weight = self._construct_active_learning_step_edge_dataset(complex, None, None)
            feature_vectors = np.copy(cluster_data)
            # pred_model = self.data_provider.prediction_function(self.iteration)
            # attention = get_attention(pred_model, feature_vectors, temperature=.01, device=self.data_provider.DEVICE, verbose=1)            
            attention = np.zeros(feature_vectors.shape)
        else: 
            raise Exception("Illegal border edges proposion!")
            
        return edge_to, edge_from, weight, feature_vectors, attention
    
    def record_time(self, save_dir, file_name, operation, t):
        file_path = os.path.join(save_dir, file_name+".json")
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                ti = json.load(f)
        else:
            ti = dict()
        if operation not in ti.keys():
            ti[operation] = dict()
        ti[operation][str(self.iteration)] = t
        with open(file_path, "w") as f:
            json.dump(ti, f)