File size: 6,152 Bytes
7b5e67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
########################################################################################################################
# IMPORT #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVITrainer,DVIALTrainer
from singleVis.eval.evaluator import Evaluator
from singleVis.data import NormalDataProvider
# from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.utils import find_neighbor_preserving_rate
from trustVis.skeleton_generator import SkeletonGenerator,CenterSkeletonGenerator,HierarchicalClusteringProxyGenerator
########################################################################################################################
# DVI PARAMETERS #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight
########################################################################################################################
# LOAD PARAMETERS #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')
# get workspace dir
current_path = os.getcwd()
new_path = os.path.join(current_path, 'training_dynamic')
parser.add_argument('--content_path', type=str,default=new_path)
parser.add_argument('--start', type=int,default=1)
parser.add_argument('--end', type=int,default=3)
# parser.add_argument('--epoch_end', type=int)
parser.add_argument('--epoch_period', type=int,default=1)
parser.add_argument('--preprocess', type=int,default=0)
parser.add_argument('--base',type=bool,default=False)
args = parser.parse_args()
CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config[VIS_METHOD]
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
GPU_ID = 0
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]
EPOCH_START = args.start
EPOCH_END = args.end
EPOCH_PERIOD = args.epoch_period
# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = 'proxy' ### saved_as
v_base = args.base
if v_base:
VIS_MODEL_NAME = 'v_base'
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
########################################################################################################################
# TRAINING SETTING #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)
PREPROCESS = args.preprocess
if PREPROCESS:
data_provider._meta_data()
if B_N_EPOCHS >0:
data_provider._estimate_boundary(LEN // 10, l_bound=L_BOUND)
# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)
# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)
evaluator = Evaluator(data_provider, projector)
Evaluation_NAME = 'subject_model_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
evaluator.save_epoch_eval_for_subject_model(i,file_name="{}".format(Evaluation_NAME))
|