File size: 6,152 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
########################################################################################################################
#                                                          IMPORT                                                      #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse

from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params

from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVITrainer,DVIALTrainer
from singleVis.eval.evaluator import Evaluator
from singleVis.data import NormalDataProvider
# from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor

from singleVis.projector import DVIProjector
from singleVis.utils import find_neighbor_preserving_rate

from trustVis.skeleton_generator import SkeletonGenerator,CenterSkeletonGenerator,HierarchicalClusteringProxyGenerator
########################################################################################################################
#                                                     DVI PARAMETERS                                                   #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight

########################################################################################################################
#                                                     LOAD PARAMETERS                                                  #
########################################################################################################################


parser = argparse.ArgumentParser(description='Process hyperparameters...')

# get workspace dir
current_path = os.getcwd()

new_path = os.path.join(current_path, 'training_dynamic')

parser.add_argument('--content_path', type=str,default=new_path)
parser.add_argument('--start', type=int,default=1)
parser.add_argument('--end', type=int,default=3)
# parser.add_argument('--epoch_end', type=int)
parser.add_argument('--epoch_period', type=int,default=1)
parser.add_argument('--preprocess', type=int,default=0)
parser.add_argument('--base',type=bool,default=False)
args = parser.parse_args()

CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
    config = json.load(f)
config = config[VIS_METHOD]

# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) 
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")

SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
GPU_ID = 0
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]

EPOCH_START = args.start
EPOCH_END = args.end
EPOCH_PERIOD = args.epoch_period

# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]

# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]




S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]

VIS_MODEL_NAME = 'proxy' ### saved_as 
v_base = args.base
if v_base:
    VIS_MODEL_NAME = 'v_base'
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]

# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")

import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))

########################################################################################################################
#                                                    TRAINING SETTING                                                  #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)
PREPROCESS = args.preprocess
if PREPROCESS:
    data_provider._meta_data()
    if B_N_EPOCHS >0:
        data_provider._estimate_boundary(LEN // 10, l_bound=L_BOUND)

# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)


# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)


evaluator = Evaluator(data_provider, projector)




Evaluation_NAME = 'subject_model_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
    evaluator.save_epoch_eval_for_subject_model(i,file_name="{}".format(Evaluation_NAME))