File size: 19,805 Bytes
7b5e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508


import torch
import numpy as np
from sklearn.neighbors import NearestNeighbors

from sklearn.metrics.pairwise import euclidean_distances
import numpy as np

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans,SpectralClustering,AgglomerativeClustering
from sklearn.metrics import pairwise_distances



from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score

class SkeletonGenerator:
    """SkeletonGenerator except allows for generate skeleton"""
    def __init__(self, data_provider, epoch, interval=25,base_num_samples=10):
        """
        interval: int : layer number of the radius
        """
        self.data_provider = data_provider
        self.epoch = epoch
        self.interval = interval
        self.base_num_samples= base_num_samples
       
    def skeleton_gen(self):
        torch.manual_seed(0)  # freeze the radom seed
        torch.cuda.manual_seed_all(0)

        # Set the random seed for numpy
        np.random.seed(0)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        train_data=self.data_provider.train_representation(epoch=self.epoch)
        train_data = torch.Tensor(train_data)
        center = train_data.mean(dim=0)
        # calculate the farest distance
        radius = ((train_data - center)**2).sum(dim=1).max().sqrt()
        # print("radius,radius",radius)

        # min_radius_log = np.log10(1e-3)
        # max_radius_log = np.log10(radius.item())
        # # *****************************************************************************************
        # # generate 100 points in log space 
        # radii_log = np.linspace(max_radius_log, min_radius_log, self.interval)
        # # convert back to linear space
        # radii = 10 ** radii_log

        # generate points in log space
        # generate points in linear space
        radii = self.create_decreasing_array(1e-3,radius.item(), self.interval)
        epsilon = 1e-2
        train_data_distances = ((train_data - center)**2).sum(dim=1).sqrt().cpu().detach().numpy()
        # calculate the number of samples for each radius

        num_samples_per_radius_l = []
        for r in radii:
            close_points_indices = np.where(np.abs(train_data_distances - r) < epsilon)[0]
            close_points = train_data[close_points_indices].cpu().detach().numpy()
            print("len()",r, len(close_points))
            # calculate the log surface area for the current radius
            # convert it back to the original scale
            # calculate the number of samples
            base_num_samples = len(close_points) + 1
            num_samples = int(base_num_samples * r // 4)
            num_samples_per_radius_l.append(num_samples)
        

        # *****************************************************************************************

        # radii = [radius*1.1, radius, radius / 2, radius / 4, radius / 10, 1e-3]  # radii at which to sample points
        # # num_samples_per_radius_l = [500, 500, 500, 500, 500, 500]  # number of samples per radius
        # aaa = 500
        # num_samples_per_radius_l = [aaa, aaa, aaa, aaa, aaa, aaa]  # number of samples per radius
        print("num_samples_per_radius_l",radii)
        print("num_samples_per_radssius_l",num_samples_per_radius_l)
        # list to store samples at all radii
        high_bom_samples = []

        for i in range(len(radii)):
            r = radii[i]

            num_samples_per_radius = num_samples_per_radius_l[i]
            # sample points on the sphere with radius r
            samples = torch.randn(num_samples_per_radius, 512)
            samples = samples / samples.norm(dim=1, keepdim=True) * r

            high_bom_samples.append(samples)

            # concatenate samples from all radii
            high_bom = torch.cat(high_bom_samples, dim=0)

            high_bom = high_bom.cpu().detach().numpy()

        print("shape", high_bom.shape)
        
        # calculate the distance of each training point to the center


        # for each radius, find the training data points close to it and add them to the high_bom
        epsilon = 1e-3  # the threshold for considering a point is close to the radius
        for r in radii:
            close_points_indices = np.where(np.abs(train_data_distances - r) < epsilon)[0]
            close_points = train_data[close_points_indices].cpu().detach().numpy()
            high_bom = np.concatenate((high_bom, close_points), axis=0)

      
        return high_bom
    
    def skeleton_gen_union(self):
        torch.manual_seed(0)  # freeze the radom seed
        torch.cuda.manual_seed_all(0)

        # Set the random seed for numpy
        np.random.seed(0)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        train_data=self.data_provider.train_representation(epoch=self.epoch)
        # border_data = self.data_provider.border_representation(epoch=self.epoch)
        # train_data = np.concatenate((train_data,border_data),axis=0)
        kmeans = KMeans(n_clusters=1)  # 'k' 是你想要的聚类数量
        # 训练模型
        kmeans.fit(train_data)
        # 获取聚类中心
        center = kmeans.cluster_centers_[0]
        center = torch.Tensor(center)
        # calculate the farest distance
        radius = ((train_data - center)**2).sum(dim=1).max().sqrt()
        print("radius,radius",radius)

        min_radius_log = np.log10(1e-3)
        max_radius_log = np.log10(radius.item() * 1)
        # *****************************************************************************************
        # generate 100 points in log space 
        radii_log = np.linspace(max_radius_log, min_radius_log, self.interval)
        # convert back to linear space
        radii = 10 ** radii_log

    
        # calculate the number of samples for each radius
        num_samples_per_radius_l = []
        for r in radii:
            # calculate the log surface area for the current radius
            # convert it back to the original scale
            # calculate the number of samples
            num_samples = int(self.base_num_samples * r // 2)
            num_samples_per_radius_l.append(num_samples)
        

        # *****************************************************************************************
        radius = radius.item()
        # radii = [radius*1.1, radius, radius / 2, radius / 4, radius / 10, 1e-3]  # radii at which to sample points
        radii = [ radius / 4, radius / 10, 1e-3]  # radii at which to sample points
        # num_samples_per_radius_l = [500, 500, 500, 500, 500, 500]  # number of samples per radius
        aaa = 200
        num_samples_per_radius_l = [aaa, aaa, aaa, aaa, aaa, aaa]  # number of samples per radius
        print("num_samples_per_radius_l",radii)
        print("num_samples_per_radius_l",num_samples_per_radius_l)
        # list to store samples at all radii
        high_bom_samples = []

        for i in range(len(radii)):
            r = radii[i]

            num_samples_per_radius = num_samples_per_radius_l[i]
            # sample points on the sphere with radius r
            samples = torch.randn(num_samples_per_radius, 512)
            samples = samples / samples.norm(dim=1, keepdim=True) * r

            high_bom_samples.append(samples)

            # concatenate samples from all radii
            high_bom = torch.cat(high_bom_samples, dim=0)

            high_bom = high_bom.cpu().detach().numpy()

        print("shape", high_bom.shape)
        
        # calculate the distance of each training point to the center
        train_data_distances = ((train_data - center)**2).sum(dim=1).sqrt().cpu().detach().numpy()

        # for each radius, find the training data points close to it and add them to the high_bom
        epsilon = 1e-2  # the threshold for considering a point is close to the radius
        for r in radii:
            close_points_indices = np.where(np.abs(train_data_distances - r) < epsilon)[0]
            close_points = train_data[close_points_indices].cpu().detach().numpy()
            high_bom = np.concatenate((high_bom, close_points), axis=0)

      
        return high_bom
    
    def skeleton_gen_use_perturb(self, _epsilon=1e-2, _per=0.7):
        """
        find the nearest training data for each radius, 
        and then generate new proxes by this add perturbation on these nearest training data
        """
        torch.manual_seed(0)  # freeze the random seed
        torch.cuda.manual_seed_all(0)
        np.random.seed(0)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        epsilon = _epsilon

        train_data = self.data_provider.train_representation(epoch=self.epoch)
        # border_data = self.data_provider.border_representation(epoch=self.epoch)
        # train_data = np.concatenate((train_data,border_data),axis=0)
        train_data = torch.Tensor(train_data)
        center = train_data.mean(dim=0)

        # calculate the furthest distance
        max_radius = ((train_data - center)**2).sum(dim=1).max().sqrt().item()
        min_radius = max_radius  * _per  # this is your minimum radius
     
        
        # interval = int(max_radius * 12.8) #MINNIST and CIFAR 10 
        interval = int(max_radius * 12.8)
        print("max_radius", max_radius,"interval",interval)

        # split the interval between max_radius and min_radius into 100 parts
        radii = np.linspace(max_radius, min_radius, interval)


        high_bom_samples = []
        train_data_distances = ((train_data - center)**2).sum(dim=1).sqrt().cpu().detach().numpy()
        print(train_data_distances)
  
        for r in radii:
        
            # find the training data that is close to the current radius
            close_points_indices = np.where(np.abs(train_data_distances - r) < epsilon)[0]
            close_points = train_data[close_points_indices]
    
            # calculate the unit vector from center to the points
            direction_to_center = (close_points - center) / torch.norm(close_points - center, dim=1, keepdim=True)
    
            # add a small perturbation along the direction to the center to get the proxies on the sphere with radius r
            noise = direction_to_center * (epsilon)
            # noise = direction_to_center * torch.randn_like(close_points) * epsilon
            proxies = (close_points + noise).cpu().detach().numpy()
    
            # add the proxies to the skeleton
            high_bom_samples.append(proxies)
        
        high_bom = np.concatenate(high_bom_samples, axis=0)

        return high_bom
    
    def gen_skeleton_by_center(self,):
        train_data = self.data_provider.train_representation(self.epoch)
        kmeans = KMeans(n_clusters=1)  # 'k' 是你想要的聚类数量
        # 训练模型
        kmeans.fit(train_data)
        # 获取聚类中心
        centers = kmeans.cluster_centers_
        return 

    
    def create_decreasing_array(self,min_val, max_val, levels, factor=0.8):
        # Calculate the total range
        range_val = max_val - min_val

        # Create an array with the specified number of levels
        level_indices = np.arange(levels)

        # Apply the factor to the levels
        scaled_levels = factor ** level_indices

        # Scale the values to fit within the range
        scaled_values = scaled_levels * range_val / np.max(scaled_levels)

        # Shift the values to start at the min_val
        final_values = max_val - scaled_values

        return final_values



class CenterSkeletonGenerator:
    """SkeletonGenerator except allows for generate skeleton"""
    def __init__(self, data_provider, epoch,threshold=0.5,min_cluster=500):
        """

        """
        self.data_provider = data_provider
        self.epoch = epoch
        self.threshold = threshold
        self.min_cluster = min_cluster
    
    def gen_center(self,data,k=2):
        """
        """
        kmeans = KMeans(n_clusters=k)  
        kmeans.fit(data)
        centers = kmeans.cluster_centers_
        labels = kmeans.labels_
        radii = []
        for i in range(k):
            cluster_data = data[labels == i]
            if len(cluster_data) > 0:
                # calculate each sample distance to center
                distances = np.sqrt(((cluster_data - centers[i]) ** 2).sum(axis=1))
                radii.append(np.max(distances))
            else:
                radii.append(0)
        
        return centers,labels,radii
    
    def if_need_split(self, data):
        if len(data) < self.min_cluster:
            return False

        kmeans = KMeans(n_clusters=2) 
        kmeans.fit(data)
        labels = kmeans.labels_

        dunn_index = self.dunns_index(data, labels)
        # print(dunn_index)
        return dunn_index < self.threshold
    
    def dunns_index(self, X, labels):
        distance_matrix = euclidean_distances(X)

        inter_cluster_distances = []
        intra_cluster_distances = []

        unique_labels = np.unique(labels)

        # Check if we have at least two clusters
        if len(unique_labels) < 2:
            return float('inf')  # Ineligible for splitting

        # Compute maximal intra-cluster distance
        for label in unique_labels:
            members = np.where(labels == label)[0]
            if len(members) <= 1:  # Skip clusters with only one member
                continue
            pairwise_distances = distance_matrix[np.ix_(members, members)]
            intra_cluster_distances.append(np.max(pairwise_distances))

        if not intra_cluster_distances:  # No eligible clusters found
            return float('inf')

        max_intra_cluster_distance = max(intra_cluster_distances)

        # Compute minimal inter-cluster distance
        for i in range(len(unique_labels)):
            for j in range(i+1, len(unique_labels)):
                members_i = np.where(labels == unique_labels[i])[0]
                members_j = np.where(labels == unique_labels[j])[0]
                pairwise_distances = distance_matrix[np.ix_(members_i, members_j)]
                inter_cluster_distances.append(np.min(pairwise_distances))

        if not inter_cluster_distances:  # No eligible clusters found
            return float('inf')

        return min(inter_cluster_distances) / max_intra_cluster_distance

    
    # def if_need_split(self, data):
    #     if len(data) < self.min_cluster:
    #         return False
    #     kmeans = KMeans(n_clusters=1)  
    #     kmeans.fit(data)
    #     centers = kmeans.cluster_centers_
    #     center = centers[0]
    #     train_data_distances = np.sqrt(((data - center)**2).sum(axis=1))
    #     pred = self.data_provider.get_pred(self.epoch,np.concatenate((data,centers),axis=0))
    #     distance_condition = np.any(train_data_distances > self.distance_condition_val)
    #     variance_condition = np.any(np.var(pred, axis=0) > self.variance_condition_val)
    #     return distance_condition or variance_condition
    
    def recursive_clustering(self, data,k=2):
        centers, labels, radii = self.gen_center(data, k=k)
        all_centers = list(centers)  # Save intermediate centers
        all_radii = list(radii)
    
        for label in set(labels):
            cluster = data[labels == label]
            if len(cluster):
                if self.if_need_split(cluster):
                    # all_centers.extend(self.recursive_clustering(cluster, k=2))
                    sub_centers, sub_radii = self.recursive_clustering(cluster, k=2)
                    all_centers.extend(sub_centers)
                    all_radii.extend(sub_radii)
            
        return all_centers, all_radii
    
    
    def center_skeleton_genertaion(self):
        # Initial centers
        data = self.data_provider.train_representation(self.epoch)
        data = data.reshape(data.shape[0], data.shape[1])

        # pca = PCA(n_components=2)
        # data = pca.fit_transform(data)

        # pca = PCA(n_components=2)
        # data = pca.fit_transform(data)
        centers_c, _, radii_c = self.gen_center(data,k=1)
        centers_n, labels,radii_n = self.gen_center(data,k=10)
        print("finished init, start generate proxy")

        # Recursive clustering
        # Recursive clustering with initial split into 10 clusters
        all_centers = []
        all_radii = []  # 存储所有簇的最大半径
        for label in range(len(labels)):
            cluster = data[labels == label]
            if len(cluster):
                # all_centers.extend(self.recursive_clustering(cluster, k=2))
                sub_centers, sub_radii = self.recursive_clustering(cluster, k=2)
                all_centers.extend(sub_centers)
                all_radii.extend(sub_radii)
            
        all_centers = np.array(all_centers)
        all_radii = np.array(all_radii)

        centers = np.concatenate((centers_c,centers_n,all_centers))
        # centers = pca.inverse_transform(centers)

                                          
        return centers,np.concatenate((radii_c, radii_n, all_radii), axis=0)
    



class SpectralClustringProxyGenerator:
    """Use Spectral clustering generate proxies"""
    def __init__(self, data_provider, epoch,threshold=0.5,min_cluster=500):
        """

        """
        self.data_provider = data_provider
        self.epoch = epoch
        self.threshold = threshold
        self.min_cluster = min_cluster
        self.data = data_provider.train_representation(epoch = self.epoch)

        def pca_(self):
            pca = PCA(n_components=50)
            reduced_data = pca.fit_transform(self.data)


class HierarchicalClusteringProxyGenerator:

    """ Use Hierachical Clusering generate proxies"""
    def __init__(self, data_provider, epoch, threshold=0.5):
        self.data_provider = data_provider
        self.threshold = threshold
        self.epoch = epoch

    def hierarchical_clustering_analysis(self, data):
        # 执行层次聚类
        clustering = AgglomerativeClustering(n_clusters=10)
        clustering.fit(data)

        # 初始化每个数据点所属的簇
        n_samples = len(data)
        cluster_membership = {i: [i] for i in range(n_samples)}
        merges = []
        centers = []
        radiuss = []
        for merge_step, (cluster_1_idx, cluster_2_idx) in enumerate(clustering.children_):
            # 这些索引代表合并的簇
            new_cluster = cluster_membership[cluster_1_idx] + cluster_membership[cluster_2_idx]

            # 更新簇的成员
            cluster_membership[n_samples + merge_step] = new_cluster

            # 计算新簇的中心和半径
            new_cluster_data = data[new_cluster]
            center = np.mean(new_cluster_data, axis=0)
            radius = np.max(np.linalg.norm(new_cluster_data - center, axis=1))
            centers.append(center)
            radiuss.append(radius)

            # 记录合并的信息
            merges.append({
                'merge_step': merge_step,
                'merged_clusters': (cluster_1_idx, cluster_2_idx),
                'new_cluster_center': center,
                'new_cluster_radius': radius,
                'new_cluster_members': new_cluster
            })

        return centers,radiuss,merges
    
    def proxy_generation(self):

        data = self.data_provider.train_representation(self.epoch)
        data = data.reshape(data.shape[0], data.shape[1])
        sampled_data = data[np.random.choice(data.shape[0], size=1000, replace=False)]
        centers,radius,merges = self.hierarchical_clustering_analysis(sampled_data)
        return np.array(centers),radius,merges