trustvis_with_dataset / singleVis /plot /ablation_smoothness_efficiency.py
Yvonnefanf
first
7b5e67a
import os
import json
import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns
def main():
datasets = ["mnist", "fmnist", "cifar10"]
for i in range(len(datasets)): # dataset
dataset = datasets[i]
print("##############################################")
print(" # [{}] #".format(dataset))
print("##############################################")
# DeepDebugger segments
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/SV_time_tnn_hybrid.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
seg_time = round(eval["segment"], 3)
complex_con_time = round(sum(eval["complex_construction"].values()), 3)
training_time = round(sum(eval["training"].values()), 3)
print("DeepDebugger Segments:")
print("\tsegment time:\t{:.3f}".format(seg_time))
print("\tcomplex construction:\t{:.3f}".format(complex_con_time))
print("\ttraining:\t{:.3f}".format(training_time))
print("\tTotal:\t{:.3f}".format(complex_con_time+training_time))
# DeepDebugger without smoothness
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/without_smoothness/SV_time_tnn_hybrid.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
seg_time = round(eval["segment"], 3)
complex_con_time = round(sum(eval["complex_construction"].values()), 3)
training_time = round(sum(eval["training"].values()), 3)
print("Without Smoothness Segments:")
print("\tsegment time:\t{:.3f}".format(seg_time))
print("\tcomplex construction:\t{:.3f}".format(complex_con_time))
print("\ttraining:\t{:.3f}".format(training_time))
print("\tTotal:\t{:.3f}".format(complex_con_time+training_time))
# DeepDebugger without smoothness
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/without_tl/SV_time_tnn_hybrid.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
seg_time = round(eval["segment"], 3)
complex_con_time = round(sum(eval["complex_construction"].values()), 3)
training_time = round(sum(eval["training"].values()), 3)
print("Without Transfer Learning Segments:")
print("\tsegment time:\t{:.3f}".format(seg_time))
print("\tcomplex construction:\t{:.3f}".format(complex_con_time))
print("\ttraining:\t{:.3f}".format(training_time))
print("\tTotal:\t{:.3f}".format(complex_con_time+training_time))
if __name__ == "__main__":
main()