yyq90 commited on
Commit
f16220a
·
1 Parent(s): 1cc95ee

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -16.94 +/- 6.95
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e994f7b527686f3ee6ff433a88f94915926df390da0a712573cd14186433b9f5
3
+ size 107992
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6fbf20b790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f6fbf208d40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679209549502840855,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB4i2PmGXUj09jww/B4i2PmGXUj09jww/B4i2PmGXUj09jww/B4i2PmGXUj09jww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA886EvzgR+b4/PGU//u+cP7LGzz/8AS6/6XSov4Pmjj8TWI6/EVeePyY7lT6ZVKu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]]",
60
+ "desired_goal": "[[-1.0375656 -0.4864595 0.89545053]\n [ 1.226074 1.6232512 -0.6797178 ]\n [-1.3160678 1.1164097 -1.1120628 ]\n [ 1.237032 0.2914669 -1.3385192 ]]",
61
+ "observation": "[[0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfbGyPBbmBj76Szg+2iX6vZzTzzzxayg+L9R8OsFx172lrtU7jAh+vfRi7D0eXhA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02181315 0.13173708 0.17997733]\n [-0.12214251 0.02536946 0.16447426]\n [ 0.00096447 -0.10519744 0.00652106]\n [-0.06201987 0.11542311 0.03524601]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBW7dzVPtG8CUhpRSlIwBbJRLMowBdJRHQKY1OJuVHFx1fZQoaAZoCWgPQwh8D5ccd1ojwJSGlFKUaBVLMmgWR0CmNPkQPI4mdX2UKGgGaAloD0MIV+pZEMobI8CUhpRSlGgVSzJoFkdApjS14mkWRHV9lChoBmgJaA9DCIMvTKYKLiHAlIaUUpRoFUsyaBZHQKY0dg75mAd1fZQoaAZoCWgPQwi4H/DAAPIZwJSGlFKUaBVLMmgWR0CmNjr6ciGGdX2UKGgGaAloD0MIfotOllonKMCUhpRSlGgVSzJoFkdApjX7/CIk7nV9lChoBmgJaA9DCF5jl6je4izAlIaUUpRoFUsyaBZHQKY1uZXMhX91fZQoaAZoCWgPQwgXSiandv40wJSGlFKUaBVLMmgWR0CmNXsEzO5bdX2UKGgGaAloD0MIXeFdLuKLI8CUhpRSlGgVSzJoFkdApjc/CMxXXHV9lChoBmgJaA9DCI2chT3tWCXAlIaUUpRoFUsyaBZHQKY3AB8QZoB1fZQoaAZoCWgPQwjEl4kipI41wJSGlFKUaBVLMmgWR0CmNr109yLidX2UKGgGaAloD0MIAU7v4v30OsCUhpRSlGgVSzJoFkdApjZ+KVII4XV9lChoBmgJaA9DCNQs0O6QmiDAlIaUUpRoFUsyaBZHQKY4R1wHZ9N1fZQoaAZoCWgPQwhNSdbh6G4zwJSGlFKUaBVLMmgWR0CmOAkmx+rmdX2UKGgGaAloD0MIa/C+KhdCM8CUhpRSlGgVSzJoFkdApjfHKwIMSnV9lChoBmgJaA9DCJfhP91AMSvAlIaUUpRoFUsyaBZHQKY3h8v24/h1fZQoaAZoCWgPQwhMUwQ4vZMzwJSGlFKUaBVLMmgWR0CmOZPTgEU1dX2UKGgGaAloD0MImnyzzY3hIcCUhpRSlGgVSzJoFkdApjlU10knkXV9lChoBmgJaA9DCNy93CdHGTXAlIaUUpRoFUsyaBZHQKY5EsZpBX11fZQoaAZoCWgPQwj7kSIyrIIswJSGlFKUaBVLMmgWR0CmONO3UhFFdX2UKGgGaAloD0MInMWLhSH6IcCUhpRSlGgVSzJoFkdApjs6DEm6XnV9lChoBmgJaA9DCFXZd0Xw/yDAlIaUUpRoFUsyaBZHQKY6+xqO9391fZQoaAZoCWgPQwhLWBtjJ8wuwJSGlFKUaBVLMmgWR0CmOrjWK/EgdX2UKGgGaAloD0MI18OXiSK4NcCUhpRSlGgVSzJoFkdApjp6KpDNQnV9lChoBmgJaA9DCPHUIw1uAznAlIaUUpRoFUsyaBZHQKY81ksjFAF1fZQoaAZoCWgPQwigU5CfjTwhwJSGlFKUaBVLMmgWR0CmPJeumrKedX2UKGgGaAloD0MIRdYaSu1JNcCUhpRSlGgVSzJoFkdApjxVkFwDNnV9lChoBmgJaA9DCMnjafmBWybAlIaUUpRoFUsyaBZHQKY8Ft4zJp51fZQoaAZoCWgPQwh5W+m12VA0wJSGlFKUaBVLMmgWR0CmPoaFEiMYdX2UKGgGaAloD0MIUInrGFeYOMCUhpRSlGgVSzJoFkdApj5IQjD8+HV9lChoBmgJaA9DCBtn0xHAPR/AlIaUUpRoFUsyaBZHQKY+Bk+X7ch1fZQoaAZoCWgPQwj0pbc/F/0lwJSGlFKUaBVLMmgWR0CmPccer+5wdX2UKGgGaAloD0MINNqqJLJ3IcCUhpRSlGgVSzJoFkdApkAxVKf4AXV9lChoBmgJaA9DCHJRLSKK4SvAlIaUUpRoFUsyaBZHQKY/8od+5OJ1fZQoaAZoCWgPQwhksrj/yJwowJSGlFKUaBVLMmgWR0CmP6/e+Eh8dX2UKGgGaAloD0MIcasgBrrKM8CUhpRSlGgVSzJoFkdApj9xUvPC23V9lChoBmgJaA9DCAZjRKLQnjbAlIaUUpRoFUsyaBZHQKZB0Jlar3l1fZQoaAZoCWgPQwiYpghwesciwJSGlFKUaBVLMmgWR0CmQZGUW2w3dX2UKGgGaAloD0MI51CGqpjyI8CUhpRSlGgVSzJoFkdApkFOyiVSoHV9lChoBmgJaA9DCGn8witJDi/AlIaUUpRoFUsyaBZHQKZBECmuTzN1fZQoaAZoCWgPQwgNjLysiRUtwJSGlFKUaBVLMmgWR0CmQ42exwAEdX2UKGgGaAloD0MIW+z2WWWeJcCUhpRSlGgVSzJoFkdApkNOzY287XV9lChoBmgJaA9DCF653jZTtTXAlIaUUpRoFUsyaBZHQKZDDJCBwuN1fZQoaAZoCWgPQwhr8SkAxn81wJSGlFKUaBVLMmgWR0CmQs0f5k9VdX2UKGgGaAloD0MI/MdCdAjMMsCUhpRSlGgVSzJoFkdApkScSh8IA3V9lChoBmgJaA9DCMUCX9Gthy7AlIaUUpRoFUsyaBZHQKZEXRBNVR11fZQoaAZoCWgPQwgxXB0AcZcqwJSGlFKUaBVLMmgWR0CmRBn+Q2dedX2UKGgGaAloD0MIrIvbaABvKMCUhpRSlGgVSzJoFkdApkPaNn5BTnV9lChoBmgJaA9DCHaLwFjfQCPAlIaUUpRoFUsyaBZHQKZFnFQVKwp1fZQoaAZoCWgPQwjS4/c2/QkgwJSGlFKUaBVLMmgWR0CmRVzXSSeRdX2UKGgGaAloD0MIdAgcCTQwM8CUhpRSlGgVSzJoFkdApkUZ33YcvXV9lChoBmgJaA9DCNdrelBQAi3AlIaUUpRoFUsyaBZHQKZE2h4+r2h1fZQoaAZoCWgPQwiBdocUA7g1wJSGlFKUaBVLMmgWR0CmRp90JWvKdX2UKGgGaAloD0MI295uSQ54LsCUhpRSlGgVSzJoFkdApkZgDcM3InV9lChoBmgJaA9DCHFV2XdFBDjAlIaUUpRoFUsyaBZHQKZGHTS9du51fZQoaAZoCWgPQwiqDyTvHOoWwJSGlFKUaBVLMmgWR0CmRd1yFPBSdX2UKGgGaAloD0MI2cwhqYWWOMCUhpRSlGgVSzJoFkdApkehOYYzi3V9lChoBmgJaA9DCPnX8sr1PjPAlIaUUpRoFUsyaBZHQKZHYfigkC51fZQoaAZoCWgPQwjyQ6URM6srwJSGlFKUaBVLMmgWR0CmRx7drO7hdX2UKGgGaAloD0MIBduIJ7tRJcCUhpRSlGgVSzJoFkdApkbfBDXvpnV9lChoBmgJaA9DCHhha7byOifAlIaUUpRoFUsyaBZHQKZIr2t+1Bt1fZQoaAZoCWgPQwgtPgXAeLYywJSGlFKUaBVLMmgWR0CmSHAnlXA/dX2UKGgGaAloD0MIlNv2Peo7NMCUhpRSlGgVSzJoFkdApkgtBppN9HV9lChoBmgJaA9DCDrmPGNfHjnAlIaUUpRoFUsyaBZHQKZH7ZYgaFV1fZQoaAZoCWgPQwhApN++DuQ4wJSGlFKUaBVLMmgWR0CmSbbgbZOBdX2UKGgGaAloD0MIQup29pX/NcCUhpRSlGgVSzJoFkdApkl3nKW9lHV9lChoBmgJaA9DCNL9nIL8rB/AlIaUUpRoFUsyaBZHQKZJNHIZIhB1fZQoaAZoCWgPQwi9cVKY92gawJSGlFKUaBVLMmgWR0CmSPSrPt2LdX2UKGgGaAloD0MIliL5SiBFJ8CUhpRSlGgVSzJoFkdApkq/CyhSL3V9lChoBmgJaA9DCAGnd/F+RCLAlIaUUpRoFUsyaBZHQKZKgKZUkv91fZQoaAZoCWgPQwhu+rMfKRY9wJSGlFKUaBVLMmgWR0CmSj5uAI6bdX2UKGgGaAloD0MIfzScMjfrNsCUhpRSlGgVSzJoFkdApkn/xOLzgHV9lChoBmgJaA9DCPSHZp5ciybAlIaUUpRoFUsyaBZHQKZLvNATqSp1fZQoaAZoCWgPQwiwHCEDeQY3wJSGlFKUaBVLMmgWR0CmS32BJ7LMdX2UKGgGaAloD0MIv5oDBHPkJcCUhpRSlGgVSzJoFkdApks6JGe+VXV9lChoBmgJaA9DCEOPGD23wCzAlIaUUpRoFUsyaBZHQKZK+k9ECvJ1fZQoaAZoCWgPQwh+jSRBuPIdwJSGlFKUaBVLMmgWR0CmTPG6f8MvdX2UKGgGaAloD0MIKlWi7C1xOsCUhpRSlGgVSzJoFkdApkyyjesPrnV9lChoBmgJaA9DCJvkR/yKATrAlIaUUpRoFUsyaBZHQKZMb7Jnxrl1fZQoaAZoCWgPQwjmH32TplkrwJSGlFKUaBVLMmgWR0CmTDA3tKI0dX2UKGgGaAloD0MIWp2cobhrNcCUhpRSlGgVSzJoFkdApk32L5ylvnV9lChoBmgJaA9DCJ1lFqHYci7AlIaUUpRoFUsyaBZHQKZNtqdpZfV1fZQoaAZoCWgPQwh7Szlf7KUqwJSGlFKUaBVLMmgWR0CmTXNozvZzdX2UKGgGaAloD0MI3IR7Zd7KM8CUhpRSlGgVSzJoFkdApk0z7sOXmnV9lChoBmgJaA9DCEqWk1D6FjHAlIaUUpRoFUsyaBZHQKZPApVjqfR1fZQoaAZoCWgPQwiIEcKjjfslwJSGlFKUaBVLMmgWR0CmTsOBDohZdX2UKGgGaAloD0MIa7qe6LqIN8CUhpRSlGgVSzJoFkdApk6ApBomHHV9lChoBmgJaA9DCMOAJVexaCbAlIaUUpRoFUsyaBZHQKZOQQEpy6t1fZQoaAZoCWgPQwjYKsHicH4ywJSGlFKUaBVLMmgWR0CmUCD9fkWAdX2UKGgGaAloD0MI7YLBNXdUM8CUhpRSlGgVSzJoFkdApk/htelbeXV9lChoBmgJaA9DCDyDhv4JZiTAlIaUUpRoFUsyaBZHQKZPnqJuVHF1fZQoaAZoCWgPQwghHomXpyM8wJSGlFKUaBVLMmgWR0CmT18afjCIdX2UKGgGaAloD0MIiNf1C3bnOcCUhpRSlGgVSzJoFkdAplEwhnrY5HV9lChoBmgJaA9DCML4adybMzjAlIaUUpRoFUsyaBZHQKZQ8VbA1vV1fZQoaAZoCWgPQwjtKTkn9ng5wJSGlFKUaBVLMmgWR0CmUK4mb9ZSdX2UKGgGaAloD0MIZ+22C82FMsCUhpRSlGgVSzJoFkdAplBuqcVgyHV9lChoBmgJaA9DCNcXCW05tyLAlIaUUpRoFUsyaBZHQKZSJg/C66J1fZQoaAZoCWgPQwiXWBmNfL44wJSGlFKUaBVLMmgWR0CmUecAzYVZdX2UKGgGaAloD0MICiyAKQNnH8CUhpRSlGgVSzJoFkdAplGjpcHGCXV9lChoBmgJaA9DCEC/79+8kC3AlIaUUpRoFUsyaBZHQKZRZCOWBz51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdf585f43dd0cdae8a3bfb7269ef44377ae0ae0e6f8f0a3d9f674407367fa91f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bcaf793f2e8c38ec57cea4b521d0eedfdafdda388e8d654da205ee4d7df8b6d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6fbf20b790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbf208d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679209549502840855, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB4i2PmGXUj09jww/B4i2PmGXUj09jww/B4i2PmGXUj09jww/B4i2PmGXUj09jww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA886EvzgR+b4/PGU//u+cP7LGzz/8AS6/6XSov4Pmjj8TWI6/EVeePyY7lT6ZVKu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjwHiLY+YZdSPT2PDD90XwM9R2ZKPN1UzjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]\n [0.35650656 0.0514139 0.54906064]]", "desired_goal": "[[-1.0375656 -0.4864595 0.89545053]\n [ 1.226074 1.6232512 -0.6797178 ]\n [-1.3160678 1.1164097 -1.1120628 ]\n [ 1.237032 0.2914669 -1.3385192 ]]", "observation": "[[0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]\n [0.35650656 0.0514139 0.54906064 0.03207345 0.01235349 0.02518695]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfbGyPBbmBj76Szg+2iX6vZzTzzzxayg+L9R8OsFx172lrtU7jAh+vfRi7D0eXhA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02181315 0.13173708 0.17997733]\n [-0.12214251 0.02536946 0.16447426]\n [ 0.00096447 -0.10519744 0.00652106]\n [-0.06201987 0.11542311 0.03524601]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBW7dzVPtG8CUhpRSlIwBbJRLMowBdJRHQKY1OJuVHFx1fZQoaAZoCWgPQwh8D5ccd1ojwJSGlFKUaBVLMmgWR0CmNPkQPI4mdX2UKGgGaAloD0MIV+pZEMobI8CUhpRSlGgVSzJoFkdApjS14mkWRHV9lChoBmgJaA9DCIMvTKYKLiHAlIaUUpRoFUsyaBZHQKY0dg75mAd1fZQoaAZoCWgPQwi4H/DAAPIZwJSGlFKUaBVLMmgWR0CmNjr6ciGGdX2UKGgGaAloD0MIfotOllonKMCUhpRSlGgVSzJoFkdApjX7/CIk7nV9lChoBmgJaA9DCF5jl6je4izAlIaUUpRoFUsyaBZHQKY1uZXMhX91fZQoaAZoCWgPQwgXSiandv40wJSGlFKUaBVLMmgWR0CmNXsEzO5bdX2UKGgGaAloD0MIXeFdLuKLI8CUhpRSlGgVSzJoFkdApjc/CMxXXHV9lChoBmgJaA9DCI2chT3tWCXAlIaUUpRoFUsyaBZHQKY3AB8QZoB1fZQoaAZoCWgPQwjEl4kipI41wJSGlFKUaBVLMmgWR0CmNr109yLidX2UKGgGaAloD0MIAU7v4v30OsCUhpRSlGgVSzJoFkdApjZ+KVII4XV9lChoBmgJaA9DCNQs0O6QmiDAlIaUUpRoFUsyaBZHQKY4R1wHZ9N1fZQoaAZoCWgPQwhNSdbh6G4zwJSGlFKUaBVLMmgWR0CmOAkmx+rmdX2UKGgGaAloD0MIa/C+KhdCM8CUhpRSlGgVSzJoFkdApjfHKwIMSnV9lChoBmgJaA9DCJfhP91AMSvAlIaUUpRoFUsyaBZHQKY3h8v24/h1fZQoaAZoCWgPQwhMUwQ4vZMzwJSGlFKUaBVLMmgWR0CmOZPTgEU1dX2UKGgGaAloD0MImnyzzY3hIcCUhpRSlGgVSzJoFkdApjlU10knkXV9lChoBmgJaA9DCNy93CdHGTXAlIaUUpRoFUsyaBZHQKY5EsZpBX11fZQoaAZoCWgPQwj7kSIyrIIswJSGlFKUaBVLMmgWR0CmONO3UhFFdX2UKGgGaAloD0MInMWLhSH6IcCUhpRSlGgVSzJoFkdApjs6DEm6XnV9lChoBmgJaA9DCFXZd0Xw/yDAlIaUUpRoFUsyaBZHQKY6+xqO9391fZQoaAZoCWgPQwhLWBtjJ8wuwJSGlFKUaBVLMmgWR0CmOrjWK/EgdX2UKGgGaAloD0MI18OXiSK4NcCUhpRSlGgVSzJoFkdApjp6KpDNQnV9lChoBmgJaA9DCPHUIw1uAznAlIaUUpRoFUsyaBZHQKY81ksjFAF1fZQoaAZoCWgPQwigU5CfjTwhwJSGlFKUaBVLMmgWR0CmPJeumrKedX2UKGgGaAloD0MIRdYaSu1JNcCUhpRSlGgVSzJoFkdApjxVkFwDNnV9lChoBmgJaA9DCMnjafmBWybAlIaUUpRoFUsyaBZHQKY8Ft4zJp51fZQoaAZoCWgPQwh5W+m12VA0wJSGlFKUaBVLMmgWR0CmPoaFEiMYdX2UKGgGaAloD0MIUInrGFeYOMCUhpRSlGgVSzJoFkdApj5IQjD8+HV9lChoBmgJaA9DCBtn0xHAPR/AlIaUUpRoFUsyaBZHQKY+Bk+X7ch1fZQoaAZoCWgPQwj0pbc/F/0lwJSGlFKUaBVLMmgWR0CmPccer+5wdX2UKGgGaAloD0MINNqqJLJ3IcCUhpRSlGgVSzJoFkdApkAxVKf4AXV9lChoBmgJaA9DCHJRLSKK4SvAlIaUUpRoFUsyaBZHQKY/8od+5OJ1fZQoaAZoCWgPQwhksrj/yJwowJSGlFKUaBVLMmgWR0CmP6/e+Eh8dX2UKGgGaAloD0MIcasgBrrKM8CUhpRSlGgVSzJoFkdApj9xUvPC23V9lChoBmgJaA9DCAZjRKLQnjbAlIaUUpRoFUsyaBZHQKZB0Jlar3l1fZQoaAZoCWgPQwiYpghwesciwJSGlFKUaBVLMmgWR0CmQZGUW2w3dX2UKGgGaAloD0MI51CGqpjyI8CUhpRSlGgVSzJoFkdApkFOyiVSoHV9lChoBmgJaA9DCGn8witJDi/AlIaUUpRoFUsyaBZHQKZBECmuTzN1fZQoaAZoCWgPQwgNjLysiRUtwJSGlFKUaBVLMmgWR0CmQ42exwAEdX2UKGgGaAloD0MIW+z2WWWeJcCUhpRSlGgVSzJoFkdApkNOzY287XV9lChoBmgJaA9DCF653jZTtTXAlIaUUpRoFUsyaBZHQKZDDJCBwuN1fZQoaAZoCWgPQwhr8SkAxn81wJSGlFKUaBVLMmgWR0CmQs0f5k9VdX2UKGgGaAloD0MI/MdCdAjMMsCUhpRSlGgVSzJoFkdApkScSh8IA3V9lChoBmgJaA9DCMUCX9Gthy7AlIaUUpRoFUsyaBZHQKZEXRBNVR11fZQoaAZoCWgPQwgxXB0AcZcqwJSGlFKUaBVLMmgWR0CmRBn+Q2dedX2UKGgGaAloD0MIrIvbaABvKMCUhpRSlGgVSzJoFkdApkPaNn5BTnV9lChoBmgJaA9DCHaLwFjfQCPAlIaUUpRoFUsyaBZHQKZFnFQVKwp1fZQoaAZoCWgPQwjS4/c2/QkgwJSGlFKUaBVLMmgWR0CmRVzXSSeRdX2UKGgGaAloD0MIdAgcCTQwM8CUhpRSlGgVSzJoFkdApkUZ33YcvXV9lChoBmgJaA9DCNdrelBQAi3AlIaUUpRoFUsyaBZHQKZE2h4+r2h1fZQoaAZoCWgPQwiBdocUA7g1wJSGlFKUaBVLMmgWR0CmRp90JWvKdX2UKGgGaAloD0MI295uSQ54LsCUhpRSlGgVSzJoFkdApkZgDcM3InV9lChoBmgJaA9DCHFV2XdFBDjAlIaUUpRoFUsyaBZHQKZGHTS9du51fZQoaAZoCWgPQwiqDyTvHOoWwJSGlFKUaBVLMmgWR0CmRd1yFPBSdX2UKGgGaAloD0MI2cwhqYWWOMCUhpRSlGgVSzJoFkdApkehOYYzi3V9lChoBmgJaA9DCPnX8sr1PjPAlIaUUpRoFUsyaBZHQKZHYfigkC51fZQoaAZoCWgPQwjyQ6URM6srwJSGlFKUaBVLMmgWR0CmRx7drO7hdX2UKGgGaAloD0MIBduIJ7tRJcCUhpRSlGgVSzJoFkdApkbfBDXvpnV9lChoBmgJaA9DCHhha7byOifAlIaUUpRoFUsyaBZHQKZIr2t+1Bt1fZQoaAZoCWgPQwgtPgXAeLYywJSGlFKUaBVLMmgWR0CmSHAnlXA/dX2UKGgGaAloD0MIlNv2Peo7NMCUhpRSlGgVSzJoFkdApkgtBppN9HV9lChoBmgJaA9DCDrmPGNfHjnAlIaUUpRoFUsyaBZHQKZH7ZYgaFV1fZQoaAZoCWgPQwhApN++DuQ4wJSGlFKUaBVLMmgWR0CmSbbgbZOBdX2UKGgGaAloD0MIQup29pX/NcCUhpRSlGgVSzJoFkdApkl3nKW9lHV9lChoBmgJaA9DCNL9nIL8rB/AlIaUUpRoFUsyaBZHQKZJNHIZIhB1fZQoaAZoCWgPQwi9cVKY92gawJSGlFKUaBVLMmgWR0CmSPSrPt2LdX2UKGgGaAloD0MIliL5SiBFJ8CUhpRSlGgVSzJoFkdApkq/CyhSL3V9lChoBmgJaA9DCAGnd/F+RCLAlIaUUpRoFUsyaBZHQKZKgKZUkv91fZQoaAZoCWgPQwhu+rMfKRY9wJSGlFKUaBVLMmgWR0CmSj5uAI6bdX2UKGgGaAloD0MIfzScMjfrNsCUhpRSlGgVSzJoFkdApkn/xOLzgHV9lChoBmgJaA9DCPSHZp5ciybAlIaUUpRoFUsyaBZHQKZLvNATqSp1fZQoaAZoCWgPQwiwHCEDeQY3wJSGlFKUaBVLMmgWR0CmS32BJ7LMdX2UKGgGaAloD0MIv5oDBHPkJcCUhpRSlGgVSzJoFkdApks6JGe+VXV9lChoBmgJaA9DCEOPGD23wCzAlIaUUpRoFUsyaBZHQKZK+k9ECvJ1fZQoaAZoCWgPQwh+jSRBuPIdwJSGlFKUaBVLMmgWR0CmTPG6f8MvdX2UKGgGaAloD0MIKlWi7C1xOsCUhpRSlGgVSzJoFkdApkyyjesPrnV9lChoBmgJaA9DCJvkR/yKATrAlIaUUpRoFUsyaBZHQKZMb7Jnxrl1fZQoaAZoCWgPQwjmH32TplkrwJSGlFKUaBVLMmgWR0CmTDA3tKI0dX2UKGgGaAloD0MIWp2cobhrNcCUhpRSlGgVSzJoFkdApk32L5ylvnV9lChoBmgJaA9DCJ1lFqHYci7AlIaUUpRoFUsyaBZHQKZNtqdpZfV1fZQoaAZoCWgPQwh7Szlf7KUqwJSGlFKUaBVLMmgWR0CmTXNozvZzdX2UKGgGaAloD0MI3IR7Zd7KM8CUhpRSlGgVSzJoFkdApk0z7sOXmnV9lChoBmgJaA9DCEqWk1D6FjHAlIaUUpRoFUsyaBZHQKZPApVjqfR1fZQoaAZoCWgPQwiIEcKjjfslwJSGlFKUaBVLMmgWR0CmTsOBDohZdX2UKGgGaAloD0MIa7qe6LqIN8CUhpRSlGgVSzJoFkdApk6ApBomHHV9lChoBmgJaA9DCMOAJVexaCbAlIaUUpRoFUsyaBZHQKZOQQEpy6t1fZQoaAZoCWgPQwjYKsHicH4ywJSGlFKUaBVLMmgWR0CmUCD9fkWAdX2UKGgGaAloD0MI7YLBNXdUM8CUhpRSlGgVSzJoFkdApk/htelbeXV9lChoBmgJaA9DCDyDhv4JZiTAlIaUUpRoFUsyaBZHQKZPnqJuVHF1fZQoaAZoCWgPQwghHomXpyM8wJSGlFKUaBVLMmgWR0CmT18afjCIdX2UKGgGaAloD0MIiNf1C3bnOcCUhpRSlGgVSzJoFkdAplEwhnrY5HV9lChoBmgJaA9DCML4adybMzjAlIaUUpRoFUsyaBZHQKZQ8VbA1vV1fZQoaAZoCWgPQwjtKTkn9ng5wJSGlFKUaBVLMmgWR0CmUK4mb9ZSdX2UKGgGaAloD0MIZ+22C82FMsCUhpRSlGgVSzJoFkdAplBuqcVgyHV9lChoBmgJaA9DCNcXCW05tyLAlIaUUpRoFUsyaBZHQKZSJg/C66J1fZQoaAZoCWgPQwiXWBmNfL44wJSGlFKUaBVLMmgWR0CmUecAzYVZdX2UKGgGaAloD0MICiyAKQNnH8CUhpRSlGgVSzJoFkdAplGjpcHGCXV9lChoBmgJaA9DCEC/79+8kC3AlIaUUpRoFUsyaBZHQKZRZCOWBz51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (888 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -16.935655602812766, "std_reward": 6.95289001812804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T07:54:20.095162"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7118d51401b569a6c883ab253221878ae0e7b81afb04bbf0293e9fa0f57ce97a
3
+ size 3056