yznlp commited on
Commit
3a6393f
·
verified ·
1 Parent(s): 3b8052a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md CHANGED
@@ -1,3 +1,83 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
  ---
6
+
7
+ # STRONG Model Card
8
+
9
+ ## Model Information
10
+
11
+ Summary description and brief definition of inputs and outputs.
12
+
13
+ ### Description
14
+
15
+ STRONG is a finetuned LED-based model that can produce structure controllable summarization of long legal opinions obtained from CanLII.
16
+
17
+ You can also find the fine-tuned model without structure information [here](https://huggingface.co/yznlp/STRONG-LED-NoStructure).
18
+
19
+ ### Usage
20
+
21
+ Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
22
+
23
+ The input is composed of two parts:
24
+ 1. Summary Structure Prompt: Concatenate a series of IRC structure labels using " | " as a separator. (labels include Non_IRC, Issue, Reason, Conclusion).
25
+ 2. After the special token " ==> ", enter the text of the legal opinion.
26
+
27
+ #### Running the model on a CPU
28
+
29
+
30
+ ```python
31
+ from transformers import AutoTokenizer, AutoModelForCausalLM
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
34
+ model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED")
35
+
36
+ input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}"
37
+ input_ids = tokenizer(input_text, return_tensors="pt")
38
+
39
+ outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0)
40
+ print(tokenizer.decode(outputs[0]))
41
+ ```
42
+
43
+
44
+ #### Running the model on a single / multi GPU
45
+
46
+
47
+ ```python
48
+ # pip install accelerate
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
52
+ model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED", device_map="auto")
53
+
54
+ input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}"
55
+ input_ids = tokenizer(input_text, return_tensors="pt")
56
+
57
+ outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0)
58
+ print(tokenizer.decode(outputs[0]))
59
+ ```
60
+
61
+ ### Paper Citation
62
+ If you find our model useful, please cite
63
+ ```
64
+ @inproceedings{zhong-litman-2023-strong,
65
+ title = "{STRONG} {--} Structure Controllable Legal Opinion Summary Generation",
66
+ author = "Zhong, Yang and
67
+ Litman, Diane",
68
+ editor = "Park, Jong C. and
69
+ Arase, Yuki and
70
+ Hu, Baotian and
71
+ Lu, Wei and
72
+ Wijaya, Derry and
73
+ Purwarianti, Ayu and
74
+ Krisnadhi, Adila Alfa",
75
+ booktitle = "Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)",
76
+ month = nov,
77
+ year = "2023",
78
+ address = "Nusa Dua, Bali",
79
+ publisher = "Association for Computational Linguistics",
80
+ url = "https://aclanthology.org/2023.findings-ijcnlp.37",
81
+ pages = "431--448",
82
+ }
83
+ ```