File size: 15,921 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import torch
from torch import nn
import numpy as np
import torch.nn.functional as F
from .depth_to_normal import Depth2Normal
"""
Sampling strategies: RS (Random Sampling), EGS (Edge-Guided Sampling), and IGS (Instance-Guided Sampling)
"""
###########
# RANDOM SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], self.mask_value, self.point_pairs
# return:
# inputs_A, inputs_B, targets_A, targets_B, consistent_masks_A, consistent_masks_B
###########
def randomSamplingNormal(inputs, targets, masks, sample_num):

    # find A-B point pairs from prediction
    num_effect_pixels = torch.sum(masks)
    shuffle_effect_pixels = torch.randperm(num_effect_pixels, device="cuda")
    valid_inputs = inputs[:, masks]
    valid_targes = targets[:, masks]
    inputs_A = valid_inputs[:, shuffle_effect_pixels[0 : sample_num * 2 : 2]]
    inputs_B = valid_inputs[:, shuffle_effect_pixels[1 : sample_num * 2 : 2]]
    # find corresponding pairs from GT
    targets_A = valid_targes[:, shuffle_effect_pixels[0 : sample_num * 2 : 2]]
    targets_B = valid_targes[:, shuffle_effect_pixels[1 : sample_num * 2 : 2]]
    if inputs_A.shape[1] != inputs_B.shape[1]:
        num_min = min(targets_A.shape[1], targets_B.shape[1])
        inputs_A = inputs_A[:, :num_min]
        inputs_B = inputs_B[:, :num_min]
        targets_A = targets_A[:, :num_min]
        targets_B = targets_B[:, :num_min]
    return inputs_A, inputs_B, targets_A, targets_B


###########
# EDGE-GUIDED SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], edges_img[i], thetas_img[i], masks[i, :], h, w
# return:
# inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B
###########
def ind2sub(idx, cols):
    r = torch.div(idx, cols, rounding_mode='floor')
    c = idx - r * cols
    return r, c


def sub2ind(r, c, cols):
    idx = r * cols + c
    return idx


def edgeGuidedSampling(inputs, targets, edges_img, thetas_img, masks, h, w):
    # find edges
    edges_max = edges_img.max()
    edges_min = edges_img.min()
    edges_mask = edges_img.ge(edges_max * 0.1)
    edges_loc = edges_mask.nonzero(as_tuple=False)

    thetas_edge = torch.masked_select(thetas_img, edges_mask)
    minlen = thetas_edge.size()[0]

    # find anchor points (i.e, edge points)
    sample_num = minlen
    index_anchors = torch.randint(0, minlen, (sample_num,), dtype=torch.long, device="cuda")
    theta_anchors = torch.gather(thetas_edge, 0, index_anchors)
    row_anchors, col_anchors = ind2sub(edges_loc[index_anchors].squeeze(1), w)
    ## compute the coordinates of 4-points,  distances are from [2, 30]
    distance_matrix = torch.randint(3, 20, (4, sample_num), device="cuda")
    pos_or_neg = torch.ones(4, sample_num, device="cuda")
    pos_or_neg[:2, :] = -pos_or_neg[:2, :]
    distance_matrix = distance_matrix.float() * pos_or_neg
    col = (
        col_anchors.unsqueeze(0).expand(4, sample_num).long()
        + torch.round(
            distance_matrix.float() * torch.abs(torch.cos(theta_anchors)).unsqueeze(0)
        ).long()
    )
    row = (
        row_anchors.unsqueeze(0).expand(4, sample_num).long()
        + torch.round(
            distance_matrix.float() * torch.abs(torch.sin(theta_anchors)).unsqueeze(0)
        ).long()
    )

    # constrain 0=<c<=w, 0<=r<=h
    # Note: index should minus 1
    col[col < 0] = 0
    col[col > w - 1] = w - 1
    row[row < 0] = 0
    row[row > h - 1] = h - 1

    # a-b, b-c, c-d
    a = sub2ind(row[0, :], col[0, :], w)
    b = sub2ind(row[1, :], col[1, :], w)
    c = sub2ind(row[2, :], col[2, :], w)
    d = sub2ind(row[3, :], col[3, :], w)
    A = torch.cat((a, b, c), 0)
    B = torch.cat((b, c, d), 0)

    

    inputs_A = inputs[:, A]
    inputs_B = inputs[:, B]
    targets_A = targets[:, A]
    targets_B = targets[:, B]
    masks_A = torch.gather(masks, 0, A.long())
    masks_B = torch.gather(masks, 0, B.long())

    # create A, B, C, D mask for visualization
    # vis_mask = masks.reshape(h, w).cpu().numpy()
    # vis_row = row.cpu()
    # vis_col = col.cpu()
    # visual_A = np.zeros((h, w)).astype(np.bool)
    # visual_B = np.zeros_like(visual_A)
    # visual_C = np.zeros_like(visual_A)
    # visual_D = np.zeros_like(visual_A)
    # visual_A[vis_row[0, :], vis_col[0, :]] = True
    # visual_B[vis_row[1, :], vis_col[1, :]] = True
    # visual_C[vis_row[2, :], vis_col[2, :]] = True
    # visual_D[vis_row[3, :], vis_col[3, :]] = True
    # visual_ABCD = [visual_A & vis_mask, visual_B & vis_mask, 
    # visual_C& vis_mask, visual_D& vis_mask]
    return (
        inputs_A,
        inputs_B,
        targets_A,
        targets_B,
        masks_A,
        masks_B,
        sample_num,
        row,
        col,
    )


######################################################
# EdgeguidedNormalRankingLoss
#####################################################
class EdgeguidedNormalLoss(nn.Module):
    def __init__(
        self,
        point_pairs=10000,
        cos_theta1=0.25,
        cos_theta2=0.98,
        cos_theta3=0.5,
        cos_theta4=0.86,
        mask_value=1e-8,
        loss_weight=1.0, 
        data_type=['stereo', 'denselidar', 'denselidar_nometric','denselidar_syn'],
        **kwargs
    ):
        super(EdgeguidedNormalLoss, self).__init__()
        self.point_pairs = point_pairs  # number of point pairs
        self.mask_value = mask_value
        self.cos_theta1 = cos_theta1  # 75 degree
        self.cos_theta2 = cos_theta2  # 10 degree
        self.cos_theta3 = cos_theta3  # 60 degree
        self.cos_theta4 = cos_theta4  # 30 degree
        # self.kernel = torch.tensor(
        #     np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32),
        #     requires_grad=False,
        # )[None, None, :, :].cuda()
        self.depth2normal = Depth2Normal()
        self.loss_weight = loss_weight
        self.data_type = data_type
        self.eps = 1e-6


    def getEdge(self, images):
        n, c, h, w = images.size()
        a = (
            torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device="cuda")
            .contiguous()
            .view((1, 1, 3, 3))
            .repeat(1, 1, 1, 1)
        )
        b = (
            torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32, device="cuda")
            .contiguous()
            .view((1, 1, 3, 3))
            .repeat(1, 1, 1, 1)
        )
        if c == 3:
            gradient_x = F.conv2d(images[:, 0, :, :].unsqueeze(1), a)
            gradient_y = F.conv2d(images[:, 0, :, :].unsqueeze(1), b)
        else:
            gradient_x = F.conv2d(images, a)
            gradient_y = F.conv2d(images, b)
        edges = torch.sqrt(torch.pow(gradient_x, 2) + torch.pow(gradient_y, 2))
        edges = F.pad(edges, (1, 1, 1, 1), "constant", 0)
        thetas = torch.atan2(gradient_y, gradient_x)
        thetas = F.pad(thetas, (1, 1, 1, 1), "constant", 0)
        return edges, thetas

    def getNormalEdge(self, normals):
        n, c, h, w = normals.size()
        a = (
            torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device="cuda")
            .contiguous()
            .view((1, 1, 3, 3))
            .repeat(3, 1, 1, 1)
        )
        b = (
            torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32, device="cuda")
            .contiguous()
            .view((1, 1, 3, 3))
            .repeat(3, 1, 1, 1)
        )
        gradient_x = torch.abs(F.conv2d(normals, a, groups=c))
        gradient_y = torch.abs(F.conv2d(normals, b, groups=c))
        gradient_x = gradient_x.mean(dim=1, keepdim=True)
        gradient_y = gradient_y.mean(dim=1, keepdim=True)
        edges = torch.sqrt(torch.pow(gradient_x, 2) + torch.pow(gradient_y, 2))
        edges = F.pad(edges, (1, 1, 1, 1), "constant", 0)
        thetas = torch.atan2(gradient_y, gradient_x)
        thetas = F.pad(thetas, (1, 1, 1, 1), "constant", 0)
        return edges, thetas

    def visual_check(self, rgb, samples):
        import os
        import matplotlib.pyplot as plt
        rgb = rgb.cpu().squeeze().numpy()

        mean = np.array([123.675, 116.28, 103.53])[:, np.newaxis, np.newaxis]
        std= np.array([58.395, 57.12, 57.375])[:, np.newaxis, np.newaxis]
        
        rgb = ((rgb * std) + mean).astype(np.uint8).transpose((1, 2, 0))
        mask_A, mask_B, mask_C, mask_D = samples
        rgb[mask_A.astype(np.bool)] = [255, 0, 0]
        rgb[mask_B.astype(np.bool)] = [0, 255, 0]
        rgb[mask_C.astype(np.bool)] = [0, 0, 255]
        rgb[mask_D.astype(np.bool)] = [255, 255, 0]
        
        filename = str(np.random.randint(10000))
        save_path = os.path.join('test_ranking', filename + '.png')
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        plt.imsave(save_path, rgb)

    def forward(self, prediction, target, mask, input, intrinsic, **kwargs):
        loss  = self.get_loss(prediction, target, mask, input, intrinsic, **kwargs)
        return loss

    def get_loss(self, prediction, target, mask, input, intrinsic, **kwargs):
        """
        input and target: surface normal input
        input: rgb images
        """
        gt_depths = target

        if 'predictions_normals' not in kwargs:
            predictions_normals, _ = self.depth2normal(prediction, intrinsic, mask)
            targets_normals, targets_normals_masks = self.depth2normal(target, intrinsic, mask)
        else:
            predictions_normals = kwargs['predictions_normals']
            targets_normals = kwargs['targets_normals']
            targets_normals_masks = kwargs['targets_normals_masks']
        masks_normals = mask & targets_normals_masks
        
        # find edges from RGB
        edges_img, thetas_img = self.getEdge(input)

        # find edges from normals
        # edges_normal, thetas_normal = self.getNormalEdge(targets_normals)
        #mask_img_border = torch.ones_like(edges_normal)  # normals on the borders
        #mask_img_border[:, :, 5:-5, 5:-5] = 0
        # edges_normal[~targets_normals_masks] = 0

        # find edges from depth
        edges_depth, thetas_depth = self.getEdge(gt_depths)
        # edges_depth_mask = edges_depth.ge(edges_depth.max() * 0.1)
        # edges_mask_dilate = torch.clamp(
        #     torch.nn.functional.conv2d(
        #         edges_depth_mask.float(), self.kernel, padding=(1, 1)
        #     ),
        #     0,
        #     1,
        # ).bool()
        # edges_normal[edges_mask_dilate] = 0
        # edges_img[edges_mask_dilate] = 0

        # =============================
        n, c, h, w = targets_normals.size()

        predictions_normals = predictions_normals.contiguous().view(n, c, -1)
        targets_normals = targets_normals.contiguous().view(n, c, -1)
        masks_normals = masks_normals.contiguous().view(n, -1)
        edges_img = edges_img.contiguous().view(n, -1)
        thetas_img = thetas_img.contiguous().view(n, -1)
        # edges_normal = edges_normal.view(n, -1)
        # thetas_normal = thetas_normal.view(n, -1)
        edges_depth = edges_depth.contiguous().view(n, -1)
        thetas_depth = thetas_depth.contiguous().view(n, -1)

        # # initialization
        losses = 0.0
        valid_samples = 0.0
        for i in range(n):
            # Edge-Guided sampling
            (
                inputs_A,
                inputs_B,
                targets_A,
                targets_B,
                masks_A,
                masks_B,
                sample_num,
                row_img,
                col_img,
            ) = edgeGuidedSampling(
                predictions_normals[i, :],
                targets_normals[i, :],
                edges_img[i],
                thetas_img[i],
                masks_normals[i, :],
                h,
                w,
            )
            # Depth-Guided sampling
            # (
            #     depth_inputs_A,
            #     depth_inputs_B,
            #     depth_targets_A,
            #     depth_targets_B,
            #     depth_masks_A,
            #     depth_masks_B,
            #     depth_sample_num,
            #     row_img,
            #     col_img,
            # ) = edgeGuidedSampling(
            #     predictions_normals[i, :],
            #     targets_normals[i, :],
            #     edges_depth[i],
            #     thetas_depth[i],
            #     masks_normals[i, :],
            #     h,
            #     w,
            # )
            # Normal-Guided sampling
            # (
            #     normal_inputs_A,
            #     normal_inputs_B,
            #     normal_targets_A,
            #     normal_targets_B,
            #     normal_masks_A,
            #     normal_masks_B,
            #     normal_sample_num,
            #     row_normal,
            #     col_normal,
            # ) = edgeGuidedSampling(
            #     predictions_normals[i, :],
            #     targets_normals[i, :],
            #     edges_normal[i],
            #     thetas_normal[i],
            #     masks_normals[i, :],
            #     h,
            #     w,
            # )

            # Combine EGS + DEGS
            # inputs_A = torch.cat((inputs_A, depth_inputs_A), 1) #normal_inputs_A
            # inputs_B = torch.cat((inputs_B, depth_inputs_B), 1) # normal_inputs_B
            # targets_A = torch.cat((targets_A, depth_targets_A), 1) #normal_targets_A
            # targets_B = torch.cat((targets_B, depth_targets_B), 1) #normal_targets_B
            # masks_A = torch.cat((masks_A, depth_masks_A), 0) #normal_masks_A
            # masks_B = torch.cat((masks_B, depth_masks_B), 0) #normal_masks_B

            # consider forward-backward consistency checking, i.e, only compute losses of point pairs with valid GT
            consistency_mask = masks_A & masks_B

            # GT ordinal relationship
            target_cos = torch.sum(targets_A * targets_B, dim=0)
            input_cos = torch.sum(inputs_A * inputs_B, dim=0)

            losses += torch.sum(torch.abs(torch.ones_like(target_cos)-input_cos) * consistency_mask.float())
            valid_samples += torch.sum(consistency_mask.float())

        loss = (losses / (valid_samples + self.eps)) * self.loss_weight
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            loss = 0 * torch.sum(prediction)
            print(f'Pair-wise Normal Regression Loss NAN error, {loss}, valid pix: {valid_samples}')
        return loss

def tmp_check_normal(normals, masks, depth):
    import matplotlib.pyplot as plt
    import os
    import cv2
    from mono.utils.visualization import vis_surface_normal
    vis_normal1 = vis_surface_normal(normals[0, ...].permute(1, 2, 0).detach(), masks[0,...].detach().squeeze())
    vis_normal2 = vis_surface_normal(normals[1, ...].permute(1, 2, 0).detach(), masks[1,...].detach().squeeze())
    vis_depth1 = depth[0, ...].detach().cpu().squeeze().numpy()
    vis_depth2 = depth[1, ...].detach().cpu().squeeze().numpy()

    name = np.random.randint(100000)
    os.makedirs('test_normal', exist_ok=True)
    cv2.imwrite(f'test_normal/{name}.png', vis_normal1)
    cv2.imwrite(f'test_normal/{name + 1}.png', vis_normal2)
    plt.imsave(f'test_normal/{name}_d.png', vis_depth1)
    plt.imsave(f'test_normal/{name + 1}_d.png', vis_depth2)

if __name__ == '__main__':
    ENL = EdgeguidedNormalLoss()
    depth = np.random.randn(2, 1, 20, 22)
    intrin = np.array([[300, 0, 10], [0, 300, 10], [0,0,1]])
    prediction = np.random.randn(2, 1, 20, 22)
    imgs = np.random.randn(2, 3, 20, 22)
    intrinsics = np.stack([intrin, intrin], axis=0)

    depth_t = torch.from_numpy(depth).cuda().float()
    prediction = torch.from_numpy(prediction).cuda().float()
    intrinsics = torch.from_numpy(intrinsics).cuda().float()
    imgs = torch.from_numpy(imgs).cuda().float()
    depth_t = -1 * torch.abs(depth_t)

    loss = ENL(prediction, depth_t, masks=depth_t>0, images=imgs, intrinsic=intrinsics)
    print(loss)