File size: 11,644 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
import torch.nn as nn
import numpy as np


class VNLoss(nn.Module):
    """
    Virtual Normal Loss.
    """
    def __init__(self,
                 delta_cos=0.867, delta_diff_x=0.01,
                 delta_diff_y=0.01, delta_diff_z=0.01,
                 delta_z=1e-5, sample_ratio=0.15,
                 loss_weight=1.0, data_type=['sfm', 'stereo', 'lidar', 'denselidar', 'denselidar_nometric', 'denselidar_syn'], **kwargs):
        super(VNLoss, self).__init__()
        self.delta_cos = delta_cos
        self.delta_diff_x = delta_diff_x
        self.delta_diff_y = delta_diff_y
        self.delta_diff_z = delta_diff_z
        self.delta_z = delta_z
        self.sample_ratio = sample_ratio
        self.loss_weight = loss_weight
        self.data_type = data_type
        self.eps = 1e-6


    def init_image_coor(self, intrinsic, height, width):
        # x_row = torch.arange(0, W, device="cuda")
        # x = torch.tile(x_row, (H, 1))
        # x = x.to(torch.float32)
        # u_m_u0 = x[None, None, :, :] - u0
        # self.register_buffer('u_m_u0', u_m_u0, persistent=False)

        # y_col = torch.arange(0, H, device="cuda")  # y_col = np.arange(0, height)
        # y = torch.transpose(torch.tile(y_col, (W, 1)), 1, 0)
        # y = y.to(torch.float32)
        # v_m_v0 = y[None, None, :, :] - v0
        # self.register_buffer('v_m_v0', v_m_v0, persistent=False)

        # pix_idx_mat = torch.arange(H*W, device="cuda").reshape((H, W))
        # self.register_buffer('pix_idx_mat', pix_idx_mat, persistent=False)
        #self.pix_idx_mat = torch.arange(height*width, device="cuda").reshape((height, width))
        
        u0 = intrinsic[:, 0, 2][:, None, None, None]
        v0 = intrinsic[:, 1, 2][:, None, None, None]
        y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device="cuda"),
                               torch.arange(0, width, dtype=torch.float32, device="cuda")], indexing='ij')
        u_m_u0 = x[None, None, :, :] - u0
        v_m_v0 = y[None, None, :, :] - v0
        # return u_m_u0, v_m_v0
        self.register_buffer('v_m_v0', v_m_v0, persistent=False)
        self.register_buffer('u_m_u0', u_m_u0, persistent=False)

    def transfer_xyz(self, depth, focal_length, u_m_u0, v_m_v0):
        x = u_m_u0 * depth / focal_length
        y = v_m_v0 * depth / focal_length
        z = depth
        pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1).contiguous() # [b, h, w, c]
        return pw

    def select_index(self, B, H, W, mask):
        """
        
        """
        p1 = []
        p2 = []
        p3 = []
        pix_idx_mat = torch.arange(H*W, device="cuda").reshape((H, W))
        for i in range(B):
            inputs_index = torch.masked_select(pix_idx_mat, mask[i, ...].gt(self.eps))
            num_effect_pixels = len(inputs_index)

            intend_sample_num = int(H * W * self.sample_ratio)
            sample_num = intend_sample_num if num_effect_pixels >= intend_sample_num else num_effect_pixels

            shuffle_effect_pixels = torch.randperm(num_effect_pixels, device="cuda")
            p1i = inputs_index[shuffle_effect_pixels[:sample_num]]
            shuffle_effect_pixels = torch.randperm(num_effect_pixels, device="cuda")
            p2i = inputs_index[shuffle_effect_pixels[:sample_num]]
            shuffle_effect_pixels = torch.randperm(num_effect_pixels, device="cuda")
            p3i = inputs_index[shuffle_effect_pixels[:sample_num]]

            cat_null = torch.tensor(([0,] * (intend_sample_num - sample_num)), dtype=torch.long, device="cuda")
            p1i = torch.cat([p1i, cat_null])
            p2i = torch.cat([p2i, cat_null])
            p3i = torch.cat([p3i, cat_null])

            p1.append(p1i)
            p2.append(p2i)
            p3.append(p3i)
        
        p1 = torch.stack(p1, dim=0)
        p2 = torch.stack(p2, dim=0)
        p3 = torch.stack(p3, dim=0)

        p1_x = p1 % W
        p1_y = torch.div(p1, W, rounding_mode='trunc').long() # p1 // W

        p2_x = p2 % W
        p2_y = torch.div(p2, W, rounding_mode='trunc').long() # p2 // W

        p3_x = p3 % W
        p3_y = torch.div(p3, W, rounding_mode='trunc').long() # p3 // W
        p123 = {'p1_x': p1_x, 'p1_y': p1_y, 'p2_x': p2_x, 'p2_y': p2_y, 'p3_x': p3_x, 'p3_y': p3_y}
        return p123

    def form_pw_groups(self, p123, pw):
        """
        Form 3D points groups, with 3 points in each grouup.
        :param p123: points index
        :param pw: 3D points
        :return:
        """
        B, _, _, _ = pw.shape
        p1_x = p123['p1_x']
        p1_y = p123['p1_y']
        p2_x = p123['p2_x']
        p2_y = p123['p2_y']
        p3_x = p123['p3_x']
        p3_y = p123['p3_y']
        
        pw_groups = []
        for i in range(B):
            pw1 = pw[i, p1_y[i], p1_x[i], :]
            pw2 = pw[i, p2_y[i], p2_x[i], :]
            pw3 = pw[i, p3_y[i], p3_x[i], :]
            pw_bi = torch.stack([pw1, pw2, pw3], dim=2)
            pw_groups.append(pw_bi)
        # [B, N, 3(x,y,z), 3(p1,p2,p3)]
        pw_groups = torch.stack(pw_groups, dim=0)
        return pw_groups

    def filter_mask(self, p123, gt_xyz, delta_cos=0.867,
                    delta_diff_x=0.005,
                    delta_diff_y=0.005,
                    delta_diff_z=0.005):
        pw = self.form_pw_groups(p123, gt_xyz)
        pw12 = pw[:, :, :, 1] - pw[:, :, :, 0]
        pw13 = pw[:, :, :, 2] - pw[:, :, :, 0]
        pw23 = pw[:, :, :, 2] - pw[:, :, :, 1]
        ###ignore linear
        pw_diff = torch.cat([pw12[:, :, :, np.newaxis], pw13[:, :, :, np.newaxis], pw23[:, :, :, np.newaxis]],
                            3)  # [b, n, 3, 3]
        m_batchsize, groups, coords, index = pw_diff.shape
        proj_query = pw_diff.view(m_batchsize * groups, -1, index).permute(0, 2, 1).contiguous()  # (B* X CX(3)) [bn, 3(p123), 3(xyz)]
        proj_key = pw_diff.contiguous().view(m_batchsize * groups, -1, index)  # B X  (3)*C [bn, 3(xyz), 3(p123)]
        q_norm = proj_query.norm(2, dim=2)
        nm = torch.bmm(q_norm.contiguous().view(m_batchsize * groups, index, 1), q_norm.view(m_batchsize * groups, 1, index)) #[]
        energy = torch.bmm(proj_query, proj_key)  # transpose check [bn, 3(p123), 3(p123)]
        norm_energy = energy / (nm + self.eps)
        norm_energy = norm_energy.contiguous().view(m_batchsize * groups, -1)
        mask_cos = torch.sum((norm_energy > delta_cos) + (norm_energy < -delta_cos), 1) > 3  # igonre
        mask_cos = mask_cos.contiguous().view(m_batchsize, groups)
        ##ignore padding and invilid depth
        mask_pad = torch.sum(pw[:, :, 2, :] > self.delta_z, 2) == 3

        ###ignore near
        mask_x = torch.sum(torch.abs(pw_diff[:, :, 0, :]) < delta_diff_x, 2) > 0
        mask_y = torch.sum(torch.abs(pw_diff[:, :, 1, :]) < delta_diff_y, 2) > 0
        mask_z = torch.sum(torch.abs(pw_diff[:, :, 2, :]) < delta_diff_z, 2) > 0

        mask_ignore = (mask_x & mask_y & mask_z) | mask_cos
        mask_near = ~mask_ignore
        mask = mask_pad & mask_near

        return mask, pw

    def select_points_groups(self, gt_depth, pred_depth, intrinsic, mask):
        B, C, H, W = gt_depth.shape
        focal_length = intrinsic[:, 0, 0][:, None, None, None]
        u_m_u0, v_m_v0 = self.u_m_u0, self.v_m_v0 # self.init_image_coor(intrinsic, height=H, width=W)
        
        pw_gt = self.transfer_xyz(gt_depth, focal_length, u_m_u0, v_m_v0)
        pw_pred = self.transfer_xyz(pred_depth, focal_length, u_m_u0, v_m_v0)
        
        p123 = self.select_index(B, H, W, mask)
        # mask:[b, n], pw_groups_gt: [b, n, 3(x,y,z), 3(p1,p2,p3)]
        mask, pw_groups_gt = self.filter_mask(p123, pw_gt,
                                              delta_cos=0.867,
                                              delta_diff_x=0.005,
                                              delta_diff_y=0.005,
                                              delta_diff_z=0.005)

        # [b, n, 3, 3]
        pw_groups_pred = self.form_pw_groups(p123, pw_pred)
        pw_groups_pred[pw_groups_pred[:, :, 2, :] == 0] = 0.0001
        mask_broadcast = mask.repeat(1, 9).reshape(B, 3, 3, -1).permute(0, 3, 1, 2).contiguous()
        pw_groups_pred_not_ignore = pw_groups_pred[mask_broadcast].reshape(1, -1, 3, 3)
        pw_groups_gt_not_ignore = pw_groups_gt[mask_broadcast].reshape(1, -1, 3, 3)

        return pw_groups_gt_not_ignore, pw_groups_pred_not_ignore

    def forward(self, prediction, target, mask, intrinsic, select=True, **kwargs): #gt_depth, pred_depth, select=True):
        """
        Virtual normal loss.
        :param prediction: predicted depth map, [B,W,H,C]
        :param data: target label, ground truth depth, [B, W, H, C], padding region [padding_up, padding_down]
        :return:
        """
        loss  = self.get_loss(prediction, target, mask, intrinsic, select, **kwargs)
        return loss
 
    
    def get_loss(self, prediction, target, mask, intrinsic, select=True, **kwargs):
        # configs for the cameras
        # focal_length = intrinsic[:, 0, 0][:, None, None, None]
        # u0 = intrinsic[:, 0, 2][:, None, None, None]
        # v0 = intrinsic[:, 1, 2][:, None, None, None]
        B, _, H, W = target.shape
        if 'u_m_u0' not in self._buffers or 'v_m_v0' not in self._buffers \
            or self.u_m_u0.shape != torch.Size([B,1,H,W]) or self.v_m_v0.shape != torch.Size([B,1,H,W]):
            self.init_image_coor(intrinsic, H, W)


        gt_points, pred_points = self.select_points_groups(target, prediction, intrinsic, mask)

        gt_p12 = gt_points[:, :, :, 1] - gt_points[:, :, :, 0]
        gt_p13 = gt_points[:, :, :, 2] - gt_points[:, :, :, 0]
        pred_p12 = pred_points[:, :, :, 1] - pred_points[:, :, :, 0]
        pred_p13 = pred_points[:, :, :, 2] - pred_points[:, :, :, 0]

        gt_normal = torch.cross(gt_p12, gt_p13, dim=2)
        pred_normal = torch.cross(pred_p12, pred_p13, dim=2)
        pred_norm = torch.norm(pred_normal, 2, dim=2, keepdim=True)
        gt_norm = torch.norm(gt_normal, 2, dim=2, keepdim=True)
        pred_mask = pred_norm == 0.0
        gt_mask = gt_norm == 0.0
        pred_mask = pred_mask.to(torch.float32)
        gt_mask = gt_mask.to(torch.float32)
        pred_mask *= self.eps
        gt_mask *= self.eps
        gt_norm = gt_norm + gt_mask
        pred_norm = pred_norm + pred_mask
        gt_normal = gt_normal / gt_norm
        pred_normal = pred_normal / pred_norm
        loss = torch.abs(gt_normal - pred_normal)
        loss = torch.sum(torch.sum(loss, dim=2), dim=0)
        if select:
            loss, indices = torch.sort(loss, dim=0, descending=False)
            loss = loss[int(loss.size(0) * 0.25):]
        loss = torch.sum(loss) / (loss.numel() + self.eps)
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            loss = 0 * torch.sum(prediction)
            print(f'VNL NAN error, {loss}')        
        return loss * self.loss_weight


if __name__ == '__main__':
    import cv2
    vnl_loss = VNLoss()
    pred_depth = np.random.random([2, 1, 480, 640])
    gt_depth = np.zeros_like(pred_depth) #np.random.random([2, 1, 480, 640])
    intrinsic = [[[100, 0, 200], [0, 100, 200], [0, 0, 1]], [[100, 0, 200], [0, 100, 200], [0, 0, 1]],]
    gt_depth = torch.tensor(np.array(gt_depth, np.float32)).cuda()
    pred_depth = torch.tensor(np.array(pred_depth, np.float32)).cuda()
    intrinsic = torch.tensor(np.array(intrinsic, np.float32)).cuda()
    mask = gt_depth > 0
    loss1 = vnl_loss(pred_depth, gt_depth, mask, intrinsic)
    loss2 = vnl_loss(pred_depth, gt_depth, mask, intrinsic)
    print(loss1, loss2)