--- language: - tr thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch datasets: - emotion (Translated to Turkish) metrics: - Accuracy, F1 Score --- # distilbert-base-turkish-cased-emotion ## Model description: [Distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters ``` learning rate 2e-5, batch size 64, num_train_epochs=8, ``` ## Model Performance Comparision on Emotion Dataset from Twitter: | Model | Accuracy | F1 Score | Test Sample per Second | | --- | --- | --- | --- | | [Distilbert-base-turkish-cased-emotion](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) | 83.25 | 83.17 | 232.197 | ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification",model='zafercavdar/distilbert-base-turkish-cased-emotion', return_all_scores=True) prediction = classifier("Bu kütüphaneyi seviyorum, en iyi yanı kolay kullanımı.", ) print(prediction) """ Output: [ [ {'label': 'sadness', 'score': 0.0026786490343511105}, {'label': 'joy', 'score': 0.6600754261016846}, {'label': 'love', 'score': 0.3203163146972656}, {'label': 'anger', 'score': 0.004358913749456406}, {'label': 'fear', 'score': 0.002354539930820465}, {'label': 'surprise', 'score': 0.010216088965535164} ] ] """ ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Eval results ```json { 'eval_accuracy': 0.8325, 'eval_f1': 0.8317301441160213, 'eval_loss': 0.5021793842315674, 'eval_runtime': 8.6167, 'eval_samples_per_second': 232.108, 'eval_steps_per_second': 3.714 } ```