Commit
·
c8e7585
1
Parent(s):
f25f57e
Delete configuration_glm.py
Browse files- configuration_glm.py +0 -136
configuration_glm.py
DELETED
@@ -1,136 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" GLM model configuration """
|
16 |
-
|
17 |
-
from transformers.configuration_utils import PretrainedConfig
|
18 |
-
from transformers.utils import logging
|
19 |
-
|
20 |
-
logger = logging.get_logger(__name__)
|
21 |
-
|
22 |
-
GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
-
"shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json",
|
24 |
-
# See all GLM models at https://huggingface.co/models?filter=glm
|
25 |
-
}
|
26 |
-
|
27 |
-
|
28 |
-
class GLMConfig(PretrainedConfig):
|
29 |
-
r"""
|
30 |
-
This is the configuration class to store the configuration of a [`~GLMModel`].
|
31 |
-
It is used to instantiate an GLM model according to the specified arguments, defining the model
|
32 |
-
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
33 |
-
the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture.
|
34 |
-
|
35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
36 |
-
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
37 |
-
for more information.
|
38 |
-
|
39 |
-
|
40 |
-
Args:
|
41 |
-
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
-
Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the
|
43 |
-
`inputs_ids` passed when calling [`~GLMModel`] or
|
44 |
-
[`~TFGLMModel`].
|
45 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
-
Dimension of the encoder layers and the pooler layer.
|
47 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
-
Number of hidden layers in the Transformer encoder.
|
49 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
52 |
-
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
53 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
54 |
-
The non-linear activation function (function or string) in the encoder and pooler.
|
55 |
-
If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
56 |
-
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
-
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
-
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
-
The dropout ratio for the attention probabilities.
|
60 |
-
max_position_embeddings (`int`, *optional*, defaults to 512):
|
61 |
-
The maximum sequence length that this model might ever be used with.
|
62 |
-
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
63 |
-
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
-
The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or
|
65 |
-
[`~TFGLMModel`].
|
66 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
69 |
-
The epsilon used by the layer normalization layers.
|
70 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
-
relevant if `config.is_decoder=True`.
|
73 |
-
Example:
|
74 |
-
|
75 |
-
```python
|
76 |
-
>>> from transformers import GLMModel, GLMConfig
|
77 |
-
|
78 |
-
>>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration
|
79 |
-
>>> configuration = GLMConfig()
|
80 |
-
|
81 |
-
>>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration
|
82 |
-
>>> model = GLMModel(configuration)
|
83 |
-
|
84 |
-
>>> # Accessing the model configuration
|
85 |
-
>>> configuration = model.config
|
86 |
-
```
|
87 |
-
"""
|
88 |
-
model_type = "glm"
|
89 |
-
attribute_map = {
|
90 |
-
"num_hidden_layers": "num_layers"
|
91 |
-
}
|
92 |
-
|
93 |
-
def __init__(
|
94 |
-
self,
|
95 |
-
num_layers=24,
|
96 |
-
vocab_size=30592,
|
97 |
-
hidden_size=1024,
|
98 |
-
num_attention_heads=16,
|
99 |
-
embedding_dropout_prob=0.1,
|
100 |
-
attention_dropout_prob=0.1,
|
101 |
-
output_dropout_prob=0.1,
|
102 |
-
max_sequence_length=512,
|
103 |
-
checkpoint_activations=False,
|
104 |
-
checkpoint_num_layers=1,
|
105 |
-
parallel_output=True,
|
106 |
-
relative_encoding=False,
|
107 |
-
block_position_encoding=True,
|
108 |
-
output_predict=False,
|
109 |
-
spell_length=None,
|
110 |
-
spell_func="lstm",
|
111 |
-
attention_scale=1.0,
|
112 |
-
initializer_range=0.02,
|
113 |
-
pool_token="cls",
|
114 |
-
**kwargs
|
115 |
-
):
|
116 |
-
self.num_layers = num_layers
|
117 |
-
self.vocab_size = vocab_size
|
118 |
-
self.hidden_size = hidden_size
|
119 |
-
self.num_attention_heads = num_attention_heads
|
120 |
-
self.embedding_dropout_prob = embedding_dropout_prob
|
121 |
-
self.attention_dropout_prob = attention_dropout_prob
|
122 |
-
self.output_dropout_prob = output_dropout_prob
|
123 |
-
self.max_sequence_length = max_sequence_length
|
124 |
-
self.checkpoint_activations = checkpoint_activations
|
125 |
-
self.checkpoint_num_layers = checkpoint_num_layers
|
126 |
-
self.parallel_output = parallel_output
|
127 |
-
self.relative_encoding = relative_encoding
|
128 |
-
self.block_position_encoding = block_position_encoding
|
129 |
-
self.output_predict = output_predict
|
130 |
-
self.spell_length = spell_length
|
131 |
-
self.spell_func = spell_func
|
132 |
-
self.attention_scale = attention_scale
|
133 |
-
self.initializer_range = initializer_range
|
134 |
-
self.pool_token = pool_token
|
135 |
-
|
136 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|