zakariarada
commited on
Commit
•
64c7c3c
1
Parent(s):
a11be67
Update README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,90 @@ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmst
|
|
17 |
- Base model: [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)
|
18 |
- Fine-tuning dataset: [zakariarada/oasst](https://huggingface.co/datasets/zakariarada/oasst)
|
19 |
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
## Usage
|
22 |
|
23 |
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
|
|
|
17 |
- Base model: [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)
|
18 |
- Fine-tuning dataset: [zakariarada/oasst](https://huggingface.co/datasets/zakariarada/oasst)
|
19 |
|
20 |
+
## Training
|
21 |
|
22 |
+
To train the model using your custom dataset, you can follow the steps below. This example demonstrates how to fine-tune the `h2oai/h2o-danube3-500m-chat` model using the Hugging Face `transformers` library.
|
23 |
+
|
24 |
+
### Code Example
|
25 |
+
|
26 |
+
```python
|
27 |
+
import pandas as pd
|
28 |
+
from transformers import (
|
29 |
+
AutoTokenizer,
|
30 |
+
AutoModelForCausalLM,
|
31 |
+
TrainingArguments,
|
32 |
+
Trainer
|
33 |
+
)
|
34 |
+
from datasets import Dataset
|
35 |
+
|
36 |
+
# Load Dataset
|
37 |
+
data_path = "train_full.pq"
|
38 |
+
df = pd.read_parquet(data_path)
|
39 |
+
|
40 |
+
# Prepare Dataset for Training
|
41 |
+
dataset = Dataset.from_pandas(df)
|
42 |
+
|
43 |
+
def preprocess_function(examples):
|
44 |
+
# Combine 'instruction' and 'parent_id' as input prompt
|
45 |
+
instruction = examples["instruction"]
|
46 |
+
parent_id = examples["parent_id"]
|
47 |
+
input_prompt = f"{parent_id}: {instruction}" if parent_id else instruction
|
48 |
+
return {
|
49 |
+
"input_text": input_prompt,
|
50 |
+
"target_text": examples["output"]
|
51 |
+
}
|
52 |
+
|
53 |
+
# Preprocess Dataset
|
54 |
+
dataset = dataset.map(preprocess_function, remove_columns=["id", "parent_id", "instruction", "output"])
|
55 |
+
|
56 |
+
# Load Tokenizer and Model
|
57 |
+
model_name = "h2oai/h2o-danube3-500m-chat"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
60 |
+
|
61 |
+
# Tokenize Data
|
62 |
+
def tokenize_function(examples):
|
63 |
+
return tokenizer(
|
64 |
+
examples["input_text"],
|
65 |
+
padding="max_length",
|
66 |
+
truncation=True,
|
67 |
+
max_length=512
|
68 |
+
)
|
69 |
+
|
70 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
71 |
+
|
72 |
+
# Training Arguments
|
73 |
+
training_args = TrainingArguments(
|
74 |
+
output_dir="./output/TCLM-beta/",
|
75 |
+
num_train_epochs=1,
|
76 |
+
per_device_train_batch_size=2,
|
77 |
+
gradient_accumulation_steps=1,
|
78 |
+
evaluation_strategy="epoch",
|
79 |
+
save_strategy="epoch",
|
80 |
+
learning_rate=1e-4,
|
81 |
+
weight_decay=0.0,
|
82 |
+
lr_scheduler_type="cosine",
|
83 |
+
warmup_ratio=0.0,
|
84 |
+
logging_dir="./logs",
|
85 |
+
logging_steps=10,
|
86 |
+
fp16=True,
|
87 |
+
save_total_limit=1,
|
88 |
+
load_best_model_at_end=True,
|
89 |
+
metric_for_best_model="loss",
|
90 |
+
greater_is_better=False
|
91 |
+
)
|
92 |
+
|
93 |
+
# Trainer Setup
|
94 |
+
trainer = Trainer(
|
95 |
+
model=model,
|
96 |
+
args=training_args,
|
97 |
+
train_dataset=tokenized_dataset,
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
)
|
100 |
+
|
101 |
+
# Train Model
|
102 |
+
trainer.train()
|
103 |
+
```
|
104 |
## Usage
|
105 |
|
106 |
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
|