File size: 4,222 Bytes
6e245b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import time
import os, sys

from pathlib import Path

from concrete.ml.deployment import FHEModelClient

import requests


def to_json(python_object):
    if isinstance(python_object, bytes):
        return {"__class__": "bytes", "__value__": list(python_object)}
    raise TypeError(repr(python_object) + " is not JSON serializable")


def from_json(python_object):
    if "__class__" in python_object:
        return bytes(python_object["__value__"])


# TODO: put the right link `API_URL` for your entry point
API_URL = "https://XXXXXXX.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
    "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
    "Content-Type": "application/json",
}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)

    if "error" in response:
        assert False, f"Got an error: {response=}"

    return response.json()


path_to_model = Path("compiled_model")

# BEGIN: replace this part with your privacy-preserving application
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
_, X_test, _, Y_test = train_test_split(x, y, test_size=0.2, random_state=42)

# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)

# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()

# Save the key in the database
evaluation_keys_remaining = evaluation_keys[:]
uid = None
is_first = True
is_finished = False
i = 0
packet_size = 1024 * 1024 * 100

while not is_finished:

    # Send by packets of 100M
    if sys.getsizeof(evaluation_keys_remaining) > packet_size:
        evaluation_keys_piece = evaluation_keys_remaining[:packet_size]
        evaluation_keys_remaining = evaluation_keys_remaining[packet_size:]
    else:
        evaluation_keys_piece = evaluation_keys_remaining
        is_finished = True

    print(
        f"Sending {i}-th piece of the key (remaining size is {sys.getsizeof(evaluation_keys_remaining)})"
    )
    i += 1

    if is_first:
        is_first = False
        payload = {
            "inputs": "fake",
            "evaluation_keys": to_json(evaluation_keys_piece),
            "method": "save_key",
        }

        uid = query(payload)["uid"]
        print(f"Storing the key in the database under {uid=}")

    else:
        payload = {
            "inputs": "fake",
            "evaluation_keys": to_json(evaluation_keys_piece),
            "method": "append_key",
            "uid": uid,
        }

        query(payload)

# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = True
time_start = time.time()
duration = 0
is_first = True

for i in range(nb_samples):

    # Quantize the input and encrypt it
    encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])

    # Prepare the payload
    payload = {
        "inputs": "fake",
        "encrypted_inputs": to_json(encrypted_inputs),
        "method": "inference",
        "uid": uid,
    }

    if is_first:
        print(f"Size of the payload: {sys.getsizeof(payload) / 1024} kilobytes")
        is_first = False

    # Run the inference on HF servers
    duration -= time.time()
    duration_inference = -time.time()
    encrypted_prediction = query(payload)
    duration += time.time()
    duration_inference += time.time()

    encrypted_prediction = from_json(encrypted_prediction)

    # Decrypt the result and dequantize
    prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
    prediction = np.argmax(prediction_proba)

    if verbose:
        print(
            f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
        )

    # Measure accuracy
    nb_good += Y_test[i] == prediction

print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start:.3f} seconds")
print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
# END: replace this part with your privacy-preserving application