File size: 4,222 Bytes
6e245b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import numpy as np
import time
import os, sys
from pathlib import Path
from concrete.ml.deployment import FHEModelClient
import requests
def to_json(python_object):
if isinstance(python_object, bytes):
return {"__class__": "bytes", "__value__": list(python_object)}
raise TypeError(repr(python_object) + " is not JSON serializable")
def from_json(python_object):
if "__class__" in python_object:
return bytes(python_object["__value__"])
# TODO: put the right link `API_URL` for your entry point
API_URL = "https://XXXXXXX.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
"Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
"Content-Type": "application/json",
}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
if "error" in response:
assert False, f"Got an error: {response=}"
return response.json()
path_to_model = Path("compiled_model")
# BEGIN: replace this part with your privacy-preserving application
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
_, X_test, _, Y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)
# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
# Save the key in the database
evaluation_keys_remaining = evaluation_keys[:]
uid = None
is_first = True
is_finished = False
i = 0
packet_size = 1024 * 1024 * 100
while not is_finished:
# Send by packets of 100M
if sys.getsizeof(evaluation_keys_remaining) > packet_size:
evaluation_keys_piece = evaluation_keys_remaining[:packet_size]
evaluation_keys_remaining = evaluation_keys_remaining[packet_size:]
else:
evaluation_keys_piece = evaluation_keys_remaining
is_finished = True
print(
f"Sending {i}-th piece of the key (remaining size is {sys.getsizeof(evaluation_keys_remaining)})"
)
i += 1
if is_first:
is_first = False
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "save_key",
}
uid = query(payload)["uid"]
print(f"Storing the key in the database under {uid=}")
else:
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "append_key",
"uid": uid,
}
query(payload)
# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = True
time_start = time.time()
duration = 0
is_first = True
for i in range(nb_samples):
# Quantize the input and encrypt it
encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])
# Prepare the payload
payload = {
"inputs": "fake",
"encrypted_inputs": to_json(encrypted_inputs),
"method": "inference",
"uid": uid,
}
if is_first:
print(f"Size of the payload: {sys.getsizeof(payload) / 1024} kilobytes")
is_first = False
# Run the inference on HF servers
duration -= time.time()
duration_inference = -time.time()
encrypted_prediction = query(payload)
duration += time.time()
duration_inference += time.time()
encrypted_prediction = from_json(encrypted_prediction)
# Decrypt the result and dequantize
prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
prediction = np.argmax(prediction_proba)
if verbose:
print(
f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
)
# Measure accuracy
nb_good += Y_test[i] == prediction
print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start:.3f} seconds")
print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
# END: replace this part with your privacy-preserving application
|