binoua commited on
Commit
f1c5195
Β·
1 Parent(s): f6c1c2e

chore: clean a bit the README

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -1,15 +1,19 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
4
 
5
  # MNIST digit classification with a CNN with Concrete ML
6
 
7
- In this repository, we classify MNIST digits, without seing digits! Indeed, digits are sent encrypted to the HF endpoints, and are classified without the server seeing the digits in the clear, thanks to fully homomorphic encryption (FHE). This is done thanks to Zama's Concrete ML.
8
 
9
  Concrete ML is Zama's open-source privacy-preserving ML package, FHE. We refer the reader to fhe.org or Zama's websites for more information on FHE.
10
 
11
- This directory was creating from the template https://huggingface.co/zama-fhe/concrete-ml-template-alpha.
12
-
13
  ## Deploying a compiled model on HF inference endpoint
14
 
15
  If you would like to deploy, it is very easy.
@@ -27,8 +31,6 @@ Now, this is the final step: using the entry point. You should:
27
  - if your inference endpoint is private, set an environment variable HF_TOKEN with your HF token
28
  - edit `play_with_endpoint.py`
29
  - replace `API_URL` by your entry point URL
30
- - replace the part between "# BEGIN: replace this part with your privacy-preserving application" and
31
- "# END: replace this part with your privacy-preserving application" with your application
32
 
33
  Finally, you'll be able to launch your application with `python play_with_endpoint.py`.
34
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ <p align="center">
5
+ <!-- product name logo -->
6
+ <img width=600 src="https://cdn-uploads.huggingface.co/production/uploads/6286462340423ef48fb6c45e/ElX3V79ViRx0BUcCPVJQG.png">
7
+ <a href="https://github.com/zama-ai/concrete-ml"> πŸ“ Github</a> | <a href="https://docs.zama.ai/concrete-ml"> πŸ“’ Documentation</a> | <a href="https://zama.ai/community"> πŸ’› Community support</a> | <a href="https://github.com/zama-ai/awesome-zama"> πŸ“š FHE resources by Zama</a>
8
+ </p>
9
+ <hr>
10
 
11
  # MNIST digit classification with a CNN with Concrete ML
12
 
13
+ In this repository, we classify MNIST digits, without seing digits! Indeed, digits are sent encrypted to the HF endpoints, and are classified (with a small torch CNN model) without the server seeing the digits in the clear, thanks to fully homomorphic encryption (FHE). This is done thanks to Zama's Concrete ML.
14
 
15
  Concrete ML is Zama's open-source privacy-preserving ML package, FHE. We refer the reader to fhe.org or Zama's websites for more information on FHE.
16
 
 
 
17
  ## Deploying a compiled model on HF inference endpoint
18
 
19
  If you would like to deploy, it is very easy.
 
31
  - if your inference endpoint is private, set an environment variable HF_TOKEN with your HF token
32
  - edit `play_with_endpoint.py`
33
  - replace `API_URL` by your entry point URL
 
 
34
 
35
  Finally, you'll be able to launch your application with `python play_with_endpoint.py`.
36