zap-thamm commited on
Commit
c7ac5c9
·
1 Parent(s): 9afd015

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.30 +/- 1.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fdc2200b0b89b2702e91c1c792352d1ce137e9f62a20f24d94c245c1b93afc8
3
+ size 107803
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6ab4a2040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fc6ab4a0540>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681861554438639173,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJUICPg9gmr/nEpY/0V6XP4foz7+N9Lo+QZp5P83qn78Hf+w+nbqvPqQNxj1Jfss9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]]",
38
+ "desired_goal": "[[ 0.12720545 -1.2060565 1.1724519 ]\n [ 1.1825811 -1.6242837 0.36514702]\n [ 0.97501 -1.249353 0.46190664]\n [ 0.34322062 0.0967057 0.09936196]]",
39
+ "observation": "[[ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/U7XPRyoFD76PT4+gtENvuBESD1wVFE+myeNvQiBFjxtB+w8ubbXPYWeDr1EVV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.10513113 0.14517254 0.1857833 ]\n [-0.13849452 0.04889381 0.20442367]\n [-0.0689232 0.00918604 0.02881213]\n [ 0.10532898 -0.03481914 0.21614558]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7SjOUUfHAMCUhpRSlIwBbJRLMowBdJRHQKx8+lnAZbZ1fZQoaAZoCWgPQwjj4xOy83bzv5SGlFKUaBVLMmgWR0CsfH1QZXMhdX2UKGgGaAloD0MI/tKiPskd/b+UhpRSlGgVSzJoFkdArHvJvFWGRHV9lChoBmgJaA9DCISfOIB+nwrAlIaUUpRoFUsyaBZHQKx7H7mdRSB1fZQoaAZoCWgPQwj03a0s0Zn7v5SGlFKUaBVLMmgWR0CsfyZh8YygdX2UKGgGaAloD0MIJLVQMjnVAMCUhpRSlGgVSzJoFkdArH6pfKISDnV9lChoBmgJaA9DCODZHr3hfgrAlIaUUpRoFUsyaBZHQKx99bILgGd1fZQoaAZoCWgPQwgV4SajyrDyv5SGlFKUaBVLMmgWR0CsfUvyCnP3dX2UKGgGaAloD0MIIJvkR/wK67+UhpRSlGgVSzJoFkdArIFV+Vkc0nV9lChoBmgJaA9DCMOAJVex+Oq/lIaUUpRoFUsyaBZHQKyA2OFxn4B1fZQoaAZoCWgPQwgY0XZM3ZUFwJSGlFKUaBVLMmgWR0CsgCUhNdqtdX2UKGgGaAloD0MICYm0jT/REMCUhpRSlGgVSzJoFkdArH97FId2gXV9lChoBmgJaA9DCHvct1onLv6/lIaUUpRoFUsyaBZHQKyCqq/dqL11fZQoaAZoCWgPQwgjZ2FPO/wFwJSGlFKUaBVLMmgWR0Csgiy4vvjPdX2UKGgGaAloD0MIVn4ZjBEJ9b+UhpRSlGgVSzJoFkdArIF32EkB0nV9lChoBmgJaA9DCPlM9s/TAAzAlIaUUpRoFUsyaBZHQKyAzLDAJsx1fZQoaAZoCWgPQwg83uS36MQGwJSGlFKUaBVLMmgWR0Csg+25hBqsdX2UKGgGaAloD0MIUFCKVu4FCcCUhpRSlGgVSzJoFkdArINvsqril3V9lChoBmgJaA9DCM1c4PJYc/y/lIaUUpRoFUsyaBZHQKyCusOoYN11fZQoaAZoCWgPQwjsouiBjyEDwJSGlFKUaBVLMmgWR0Csgg+rMkhSdX2UKGgGaAloD0MI/u4dNSbkB8CUhpRSlGgVSzJoFkdArIU+JWNm2HV9lChoBmgJaA9DCEqX/iWpDBDAlIaUUpRoFUsyaBZHQKyEv/QSi/R1fZQoaAZoCWgPQwhl/tE3aVoGwJSGlFKUaBVLMmgWR0CshAry1/lRdX2UKGgGaAloD0MIVRaFXRS957+UhpRSlGgVSzJoFkdArINf9kz413V9lChoBmgJaA9DCPTeGAKAowLAlIaUUpRoFUsyaBZHQKyGhczqKP51fZQoaAZoCWgPQwieXinLEEfkv5SGlFKUaBVLMmgWR0CshgfNZ/0/dX2UKGgGaAloD0MI+1qXGqGfBsCUhpRSlGgVSzJoFkdArIVS5byH23V9lChoBmgJaA9DCAmNYOP61wzAlIaUUpRoFUsyaBZHQKyEp+KCQLh1fZQoaAZoCWgPQwhRpWYPtAL1v5SGlFKUaBVLMmgWR0Csh79l2/zrdX2UKGgGaAloD0MIMPZefNHeCcCUhpRSlGgVSzJoFkdArIdBWLgn+nV9lChoBmgJaA9DCOay0Tk/pQfAlIaUUpRoFUsyaBZHQKyGjFgDzRR1fZQoaAZoCWgPQwj8x0J0CFz8v5SGlFKUaBVLMmgWR0CsheFEiMYNdX2UKGgGaAloD0MIVwkWhzNfCsCUhpRSlGgVSzJoFkdArIj/q/ub7XV9lChoBmgJaA9DCOPg0jHn2fa/lIaUUpRoFUsyaBZHQKyIgX9BKL91fZQoaAZoCWgPQwg1lxsMdbgJwJSGlFKUaBVLMmgWR0Csh8yBClabdX2UKGgGaAloD0MIS+SCM/j78b+UhpRSlGgVSzJoFkdArIchUBGQS3V9lChoBmgJaA9DCJVkHY6u8g/AlIaUUpRoFUsyaBZHQKyKPEWqLjx1fZQoaAZoCWgPQwgtIR/0bFbwv5SGlFKUaBVLMmgWR0Csib4QBgeBdX2UKGgGaAloD0MIVW03wTdtB8CUhpRSlGgVSzJoFkdArIkI73fygHV9lChoBmgJaA9DCM8R+S6lLvm/lIaUUpRoFUsyaBZHQKyIXdY4hll1fZQoaAZoCWgPQwiJYYcx6W/wv5SGlFKUaBVLMmgWR0Csi3ZTIeYEdX2UKGgGaAloD0MIGf7TDRS48r+UhpRSlGgVSzJoFkdArIr4GfPHDXV9lChoBmgJaA9DCLjIPV3dkQjAlIaUUpRoFUsyaBZHQKyKQ2wV0tB1fZQoaAZoCWgPQwi9rIkFvqL3v5SGlFKUaBVLMmgWR0CsiZhsqJ/HdX2UKGgGaAloD0MI3XniOVsA/7+UhpRSlGgVSzJoFkdArIyz/GVAzHV9lChoBmgJaA9DCEMAcOzZ0w3AlIaUUpRoFUsyaBZHQKyMNe7cwg11fZQoaAZoCWgPQwjcniCx3b0AwJSGlFKUaBVLMmgWR0Csi4D4HoovdX2UKGgGaAloD0MIbeLkfofCCsCUhpRSlGgVSzJoFkdArIrV4Z/CqXV9lChoBmgJaA9DCFrwoq8gDQzAlIaUUpRoFUsyaBZHQKyN5RVp9JB1fZQoaAZoCWgPQwhBYyZRL7gMwJSGlFKUaBVLMmgWR0CsjWbjT8YRdX2UKGgGaAloD0MItTf4wmSq+L+UhpRSlGgVSzJoFkdArIyx+vyLAHV9lChoBmgJaA9DCFVP5h998wfAlIaUUpRoFUsyaBZHQKyMBthNM491fZQoaAZoCWgPQwgrvqHw2fr1v5SGlFKUaBVLMmgWR0CsjyYffXPJdX2UKGgGaAloD0MI91rQe2MI57+UhpRSlGgVSzJoFkdArI6n+wTufHV9lChoBmgJaA9DCCNKe4MvLAfAlIaUUpRoFUsyaBZHQKyN8zUI9kl1fZQoaAZoCWgPQwiaBdodUnwQwJSGlFKUaBVLMmgWR0CsjUf8uSOjdX2UKGgGaAloD0MI0uC2tvA85r+UhpRSlGgVSzJoFkdArJBjoIOYpnV9lChoBmgJaA9DCCIAOPbsufm/lIaUUpRoFUsyaBZHQKyP5WjGkvd1fZQoaAZoCWgPQwh0Ka4q+24CwJSGlFKUaBVLMmgWR0CsjzCsny/cdX2UKGgGaAloD0MIUoGTbeCO+7+UhpRSlGgVSzJoFkdArI6FpM6BAnV9lChoBmgJaA9DCCoCnN7FewLAlIaUUpRoFUsyaBZHQKyRnj2i+L51fZQoaAZoCWgPQwj7sUl+xC8CwJSGlFKUaBVLMmgWR0CskR/ixVyWdX2UKGgGaAloD0MICHb8FwgC+7+UhpRSlGgVSzJoFkdArJBrC79Q43V9lChoBmgJaA9DCMl3KXXJ+Pi/lIaUUpRoFUsyaBZHQKyPwAAAAAB1fZQoaAZoCWgPQwhHVRNE3cf/v5SGlFKUaBVLMmgWR0CsktiKJl8PdX2UKGgGaAloD0MIYFj+fFuAEcCUhpRSlGgVSzJoFkdArJJae05U+HV9lChoBmgJaA9DCPsHkQw59vK/lIaUUpRoFUsyaBZHQKyRpX+VC5V1fZQoaAZoCWgPQwhwzR39LxcNwJSGlFKUaBVLMmgWR0CskPpcHGCJdX2UKGgGaAloD0MIahMn9zs0AMCUhpRSlGgVSzJoFkdArJQLa/RE4XV9lChoBmgJaA9DCDxodt1bUfy/lIaUUpRoFUsyaBZHQKyTjW7voeR1fZQoaAZoCWgPQwjiI2JKJBEAwJSGlFKUaBVLMmgWR0CsktieNDMNdX2UKGgGaAloD0MIC+4HPDBAAcCUhpRSlGgVSzJoFkdArJIthb4agnV9lChoBmgJaA9DCAZM4Nbd/PC/lIaUUpRoFUsyaBZHQKyVRIiC8OF1fZQoaAZoCWgPQwgE54wo7U3yv5SGlFKUaBVLMmgWR0CslMZW7voedX2UKGgGaAloD0MI9S9JZYp5+r+UhpRSlGgVSzJoFkdArJQREUj9oHV9lChoBmgJaA9DCK3fTEwXIv2/lIaUUpRoFUsyaBZHQKyTZiCrcTJ1fZQoaAZoCWgPQwjLun8sRKcPwJSGlFKUaBVLMmgWR0CslyE6T4cndX2UKGgGaAloD0MIR+S7lLqEB8CUhpRSlGgVSzJoFkdArJaklHBk7XV9lChoBmgJaA9DCN1fPe5bbfu/lIaUUpRoFUsyaBZHQKyV8K2rn1Z1fZQoaAZoCWgPQwgUkszqHW7sv5SGlFKUaBVLMmgWR0CslUafapPzdX2UKGgGaAloD0MIv9NkxttKD8CUhpRSlGgVSzJoFkdArJkuaKDTSnV9lChoBmgJaA9DCCibcoV3WQHAlIaUUpRoFUsyaBZHQKyYsUSIxg11fZQoaAZoCWgPQwjeHoSAfPkTwJSGlFKUaBVLMmgWR0Csl/1ZLZi/dX2UKGgGaAloD0MImS1ZFeEGBMCUhpRSlGgVSzJoFkdArJdTHfdhzHV9lChoBmgJaA9DCI50BkZeNgvAlIaUUpRoFUsyaBZHQKybS5Yoy9F1fZQoaAZoCWgPQwh7aYoAp7cFwJSGlFKUaBVLMmgWR0Csms7rTpgUdX2UKGgGaAloD0MIsYnMXODyD8CUhpRSlGgVSzJoFkdArJobPjXFtXV9lChoBmgJaA9DCFwf1hu1QgDAlIaUUpRoFUsyaBZHQKyZcaPS2IB1fZQoaAZoCWgPQwjNeFvptbkCwJSGlFKUaBVLMmgWR0CsnYQhW5pbdX2UKGgGaAloD0MIJ9pVSPlpDcCUhpRSlGgVSzJoFkdArJ0HOryUcHV9lChoBmgJaA9DCCrkSj0L4gTAlIaUUpRoFUsyaBZHQKycUz2OAAh1fZQoaAZoCWgPQwiQ2y+frBgIwJSGlFKUaBVLMmgWR0Csm6k0SAYpdX2UKGgGaAloD0MIa4Ko+wAk/b+UhpRSlGgVSzJoFkdArJ/Tl90A93V9lChoBmgJaA9DCGe0VUlkfwDAlIaUUpRoFUsyaBZHQKyfVnyNGVl1fZQoaAZoCWgPQwhoIQGjy5v+v5SGlFKUaBVLMmgWR0CsnqKUeMhpdX2UKGgGaAloD0MIR+hn6nVLBcCUhpRSlGgVSzJoFkdArJ36vaDf33V9lChoBmgJaA9DCHCUvDrHwArAlIaUUpRoFUsyaBZHQKyh0u8K5TZ1fZQoaAZoCWgPQwhRoiWPpyUAwJSGlFKUaBVLMmgWR0CsoVUkWykcdX2UKGgGaAloD0MID+85sBwh/7+UhpRSlGgVSzJoFkdArKChQm/nGXV9lChoBmgJaA9DCIbLKmwG+PW/lIaUUpRoFUsyaBZHQKyf9nHvMKV1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aeb5797d8ff78695a7feec8bb25c0c91e4314455ac17515911e42f9d74fa5a7
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d67a852c6a9304883893227466af3dc0851953349f801ef3229d0047df74cfc5
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6ab4a2040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc6ab4a0540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681861554438639173, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJUICPg9gmr/nEpY/0V6XP4foz7+N9Lo+QZp5P83qn78Hf+w+nbqvPqQNxj1Jfss9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]]", "desired_goal": "[[ 0.12720545 -1.2060565 1.1724519 ]\n [ 1.1825811 -1.6242837 0.36514702]\n [ 0.97501 -1.249353 0.46190664]\n [ 0.34322062 0.0967057 0.09936196]]", "observation": "[[ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/U7XPRyoFD76PT4+gtENvuBESD1wVFE+myeNvQiBFjxtB+w8ubbXPYWeDr1EVV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10513113 0.14517254 0.1857833 ]\n [-0.13849452 0.04889381 0.20442367]\n [-0.0689232 0.00918604 0.02881213]\n [ 0.10532898 -0.03481914 0.21614558]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7SjOUUfHAMCUhpRSlIwBbJRLMowBdJRHQKx8+lnAZbZ1fZQoaAZoCWgPQwjj4xOy83bzv5SGlFKUaBVLMmgWR0CsfH1QZXMhdX2UKGgGaAloD0MI/tKiPskd/b+UhpRSlGgVSzJoFkdArHvJvFWGRHV9lChoBmgJaA9DCISfOIB+nwrAlIaUUpRoFUsyaBZHQKx7H7mdRSB1fZQoaAZoCWgPQwj03a0s0Zn7v5SGlFKUaBVLMmgWR0CsfyZh8YygdX2UKGgGaAloD0MIJLVQMjnVAMCUhpRSlGgVSzJoFkdArH6pfKISDnV9lChoBmgJaA9DCODZHr3hfgrAlIaUUpRoFUsyaBZHQKx99bILgGd1fZQoaAZoCWgPQwgV4SajyrDyv5SGlFKUaBVLMmgWR0CsfUvyCnP3dX2UKGgGaAloD0MIIJvkR/wK67+UhpRSlGgVSzJoFkdArIFV+Vkc0nV9lChoBmgJaA9DCMOAJVex+Oq/lIaUUpRoFUsyaBZHQKyA2OFxn4B1fZQoaAZoCWgPQwgY0XZM3ZUFwJSGlFKUaBVLMmgWR0CsgCUhNdqtdX2UKGgGaAloD0MICYm0jT/REMCUhpRSlGgVSzJoFkdArH97FId2gXV9lChoBmgJaA9DCHvct1onLv6/lIaUUpRoFUsyaBZHQKyCqq/dqL11fZQoaAZoCWgPQwgjZ2FPO/wFwJSGlFKUaBVLMmgWR0Csgiy4vvjPdX2UKGgGaAloD0MIVn4ZjBEJ9b+UhpRSlGgVSzJoFkdArIF32EkB0nV9lChoBmgJaA9DCPlM9s/TAAzAlIaUUpRoFUsyaBZHQKyAzLDAJsx1fZQoaAZoCWgPQwg83uS36MQGwJSGlFKUaBVLMmgWR0Csg+25hBqsdX2UKGgGaAloD0MIUFCKVu4FCcCUhpRSlGgVSzJoFkdArINvsqril3V9lChoBmgJaA9DCM1c4PJYc/y/lIaUUpRoFUsyaBZHQKyCusOoYN11fZQoaAZoCWgPQwjsouiBjyEDwJSGlFKUaBVLMmgWR0Csgg+rMkhSdX2UKGgGaAloD0MI/u4dNSbkB8CUhpRSlGgVSzJoFkdArIU+JWNm2HV9lChoBmgJaA9DCEqX/iWpDBDAlIaUUpRoFUsyaBZHQKyEv/QSi/R1fZQoaAZoCWgPQwhl/tE3aVoGwJSGlFKUaBVLMmgWR0CshAry1/lRdX2UKGgGaAloD0MIVRaFXRS957+UhpRSlGgVSzJoFkdArINf9kz413V9lChoBmgJaA9DCPTeGAKAowLAlIaUUpRoFUsyaBZHQKyGhczqKP51fZQoaAZoCWgPQwieXinLEEfkv5SGlFKUaBVLMmgWR0CshgfNZ/0/dX2UKGgGaAloD0MI+1qXGqGfBsCUhpRSlGgVSzJoFkdArIVS5byH23V9lChoBmgJaA9DCAmNYOP61wzAlIaUUpRoFUsyaBZHQKyEp+KCQLh1fZQoaAZoCWgPQwhRpWYPtAL1v5SGlFKUaBVLMmgWR0Csh79l2/zrdX2UKGgGaAloD0MIMPZefNHeCcCUhpRSlGgVSzJoFkdArIdBWLgn+nV9lChoBmgJaA9DCOay0Tk/pQfAlIaUUpRoFUsyaBZHQKyGjFgDzRR1fZQoaAZoCWgPQwj8x0J0CFz8v5SGlFKUaBVLMmgWR0CsheFEiMYNdX2UKGgGaAloD0MIVwkWhzNfCsCUhpRSlGgVSzJoFkdArIj/q/ub7XV9lChoBmgJaA9DCOPg0jHn2fa/lIaUUpRoFUsyaBZHQKyIgX9BKL91fZQoaAZoCWgPQwg1lxsMdbgJwJSGlFKUaBVLMmgWR0Csh8yBClabdX2UKGgGaAloD0MIS+SCM/j78b+UhpRSlGgVSzJoFkdArIchUBGQS3V9lChoBmgJaA9DCJVkHY6u8g/AlIaUUpRoFUsyaBZHQKyKPEWqLjx1fZQoaAZoCWgPQwgtIR/0bFbwv5SGlFKUaBVLMmgWR0Csib4QBgeBdX2UKGgGaAloD0MIVW03wTdtB8CUhpRSlGgVSzJoFkdArIkI73fygHV9lChoBmgJaA9DCM8R+S6lLvm/lIaUUpRoFUsyaBZHQKyIXdY4hll1fZQoaAZoCWgPQwiJYYcx6W/wv5SGlFKUaBVLMmgWR0Csi3ZTIeYEdX2UKGgGaAloD0MIGf7TDRS48r+UhpRSlGgVSzJoFkdArIr4GfPHDXV9lChoBmgJaA9DCLjIPV3dkQjAlIaUUpRoFUsyaBZHQKyKQ2wV0tB1fZQoaAZoCWgPQwi9rIkFvqL3v5SGlFKUaBVLMmgWR0CsiZhsqJ/HdX2UKGgGaAloD0MI3XniOVsA/7+UhpRSlGgVSzJoFkdArIyz/GVAzHV9lChoBmgJaA9DCEMAcOzZ0w3AlIaUUpRoFUsyaBZHQKyMNe7cwg11fZQoaAZoCWgPQwjcniCx3b0AwJSGlFKUaBVLMmgWR0Csi4D4HoovdX2UKGgGaAloD0MIbeLkfofCCsCUhpRSlGgVSzJoFkdArIrV4Z/CqXV9lChoBmgJaA9DCFrwoq8gDQzAlIaUUpRoFUsyaBZHQKyN5RVp9JB1fZQoaAZoCWgPQwhBYyZRL7gMwJSGlFKUaBVLMmgWR0CsjWbjT8YRdX2UKGgGaAloD0MItTf4wmSq+L+UhpRSlGgVSzJoFkdArIyx+vyLAHV9lChoBmgJaA9DCFVP5h998wfAlIaUUpRoFUsyaBZHQKyMBthNM491fZQoaAZoCWgPQwgrvqHw2fr1v5SGlFKUaBVLMmgWR0CsjyYffXPJdX2UKGgGaAloD0MI91rQe2MI57+UhpRSlGgVSzJoFkdArI6n+wTufHV9lChoBmgJaA9DCCNKe4MvLAfAlIaUUpRoFUsyaBZHQKyN8zUI9kl1fZQoaAZoCWgPQwiaBdodUnwQwJSGlFKUaBVLMmgWR0CsjUf8uSOjdX2UKGgGaAloD0MI0uC2tvA85r+UhpRSlGgVSzJoFkdArJBjoIOYpnV9lChoBmgJaA9DCCIAOPbsufm/lIaUUpRoFUsyaBZHQKyP5WjGkvd1fZQoaAZoCWgPQwh0Ka4q+24CwJSGlFKUaBVLMmgWR0CsjzCsny/cdX2UKGgGaAloD0MIUoGTbeCO+7+UhpRSlGgVSzJoFkdArI6FpM6BAnV9lChoBmgJaA9DCCoCnN7FewLAlIaUUpRoFUsyaBZHQKyRnj2i+L51fZQoaAZoCWgPQwj7sUl+xC8CwJSGlFKUaBVLMmgWR0CskR/ixVyWdX2UKGgGaAloD0MICHb8FwgC+7+UhpRSlGgVSzJoFkdArJBrC79Q43V9lChoBmgJaA9DCMl3KXXJ+Pi/lIaUUpRoFUsyaBZHQKyPwAAAAAB1fZQoaAZoCWgPQwhHVRNE3cf/v5SGlFKUaBVLMmgWR0CsktiKJl8PdX2UKGgGaAloD0MIYFj+fFuAEcCUhpRSlGgVSzJoFkdArJJae05U+HV9lChoBmgJaA9DCPsHkQw59vK/lIaUUpRoFUsyaBZHQKyRpX+VC5V1fZQoaAZoCWgPQwhwzR39LxcNwJSGlFKUaBVLMmgWR0CskPpcHGCJdX2UKGgGaAloD0MIahMn9zs0AMCUhpRSlGgVSzJoFkdArJQLa/RE4XV9lChoBmgJaA9DCDxodt1bUfy/lIaUUpRoFUsyaBZHQKyTjW7voeR1fZQoaAZoCWgPQwjiI2JKJBEAwJSGlFKUaBVLMmgWR0CsktieNDMNdX2UKGgGaAloD0MIC+4HPDBAAcCUhpRSlGgVSzJoFkdArJIthb4agnV9lChoBmgJaA9DCAZM4Nbd/PC/lIaUUpRoFUsyaBZHQKyVRIiC8OF1fZQoaAZoCWgPQwgE54wo7U3yv5SGlFKUaBVLMmgWR0CslMZW7voedX2UKGgGaAloD0MI9S9JZYp5+r+UhpRSlGgVSzJoFkdArJQREUj9oHV9lChoBmgJaA9DCK3fTEwXIv2/lIaUUpRoFUsyaBZHQKyTZiCrcTJ1fZQoaAZoCWgPQwjLun8sRKcPwJSGlFKUaBVLMmgWR0CslyE6T4cndX2UKGgGaAloD0MIR+S7lLqEB8CUhpRSlGgVSzJoFkdArJaklHBk7XV9lChoBmgJaA9DCN1fPe5bbfu/lIaUUpRoFUsyaBZHQKyV8K2rn1Z1fZQoaAZoCWgPQwgUkszqHW7sv5SGlFKUaBVLMmgWR0CslUafapPzdX2UKGgGaAloD0MIv9NkxttKD8CUhpRSlGgVSzJoFkdArJkuaKDTSnV9lChoBmgJaA9DCCibcoV3WQHAlIaUUpRoFUsyaBZHQKyYsUSIxg11fZQoaAZoCWgPQwjeHoSAfPkTwJSGlFKUaBVLMmgWR0Csl/1ZLZi/dX2UKGgGaAloD0MImS1ZFeEGBMCUhpRSlGgVSzJoFkdArJdTHfdhzHV9lChoBmgJaA9DCI50BkZeNgvAlIaUUpRoFUsyaBZHQKybS5Yoy9F1fZQoaAZoCWgPQwh7aYoAp7cFwJSGlFKUaBVLMmgWR0Csms7rTpgUdX2UKGgGaAloD0MIsYnMXODyD8CUhpRSlGgVSzJoFkdArJobPjXFtXV9lChoBmgJaA9DCFwf1hu1QgDAlIaUUpRoFUsyaBZHQKyZcaPS2IB1fZQoaAZoCWgPQwjNeFvptbkCwJSGlFKUaBVLMmgWR0CsnYQhW5pbdX2UKGgGaAloD0MIJ9pVSPlpDcCUhpRSlGgVSzJoFkdArJ0HOryUcHV9lChoBmgJaA9DCCrkSj0L4gTAlIaUUpRoFUsyaBZHQKycUz2OAAh1fZQoaAZoCWgPQwiQ2y+frBgIwJSGlFKUaBVLMmgWR0Csm6k0SAYpdX2UKGgGaAloD0MIa4Ko+wAk/b+UhpRSlGgVSzJoFkdArJ/Tl90A93V9lChoBmgJaA9DCGe0VUlkfwDAlIaUUpRoFUsyaBZHQKyfVnyNGVl1fZQoaAZoCWgPQwhoIQGjy5v+v5SGlFKUaBVLMmgWR0CsnqKUeMhpdX2UKGgGaAloD0MIR+hn6nVLBcCUhpRSlGgVSzJoFkdArJ36vaDf33V9lChoBmgJaA9DCHCUvDrHwArAlIaUUpRoFUsyaBZHQKyh0u8K5TZ1fZQoaAZoCWgPQwhRoiWPpyUAwJSGlFKUaBVLMmgWR0CsoVUkWykcdX2UKGgGaAloD0MID+85sBwh/7+UhpRSlGgVSzJoFkdArKChQm/nGXV9lChoBmgJaA9DCIbLKmwG+PW/lIaUUpRoFUsyaBZHQKyf9nHvMKV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (497 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.303786621429026, "std_reward": 1.3050638174268294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T00:47:02.471758"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20e73ab152c1d0dba7e5ac55a908cbab98d77824ca8a23b13bbc49d1e8dc1d00
3
+ size 2381