zaq-hack commited on
Commit
23647aa
·
verified ·
1 Parent(s): 951c2a6

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +392 -0
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ - ja
6
+ - ko
7
+ metrics:
8
+ - accuracy
9
+ pipeline_tag: text-generation
10
+ tags:
11
+ - code
12
+ - model
13
+ - llm
14
+ ---
15
+
16
+ <!-- markdownlint-disable first-line-h1 -->
17
+ <!-- markdownlint-disable html -->
18
+ <div align="center">
19
+ <img src="./assets/imgs/orion_start.PNG" alt="logo" width="50%" />
20
+ </div>
21
+
22
+ <div align="center">
23
+ <h1>
24
+ Orion-14B
25
+ </h1>
26
+ </div>
27
+
28
+ <div align="center">
29
+
30
+ <div align="center">
31
+ <b>🌐English</b> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-LongChat/blob/main/README_zh.md" target="_blank">🇨🇳中文</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-LongChat/blob/main/README_ja.md" target="_blank">🇯🇵日本語</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-LongChat/blob/main/README_ko.md" target="_blank">🇰🇷한국어</a>
32
+ </div>
33
+
34
+ <h4 align="center">
35
+ <p>
36
+ 🤗 <a href="https://huggingface.co/OrionStarAI" target="_blank">HuggingFace Mainpage</a> | 🤖 <a href="https://modelscope.cn/organization/OrionStarAI" target="_blank">ModelScope Mainpage</a><br>🎬 <a href="https://huggingface.co/spaces/OrionStarAI/Orion-14B-App-Demo" target="_blank">HuggingFace Demo</a> | 🎫 <a href="https://modelscope.cn/studios/OrionStarAI/Orion-14B-App-Demo/summary" target="_blank">ModelScope Demo</a><br>😺 <a href="https://github.com/OrionStarAI/Orion" target="_blank">GitHub</a><br>📖 <a href="https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf" target="_blank">Tech Report</a>
37
+ <p>
38
+ </h4>
39
+
40
+ </div>
41
+
42
+
43
+
44
+ # Table of Contents
45
+
46
+ - [📖 Model Introduction](#model-introduction)
47
+ - [🔗 Model Download](#model-download)
48
+ - [🔖 Model Benchmark](#model-benchmark)
49
+ - [📊 Model Inference](#model-inference)[<img src="./assets/imgs/vllm.png" alt="vllm" height="20"/>](#vllm) [<img src="./assets/imgs/llama_cpp.png" alt="llamacpp" height="20"/>](#llama-cpp)
50
+ - [📜 Declarations & License](#declarations-license)
51
+ - [🥇 Company Introduction](#company-introduction)
52
+
53
+ <a name="model-introduction"></a><br>
54
+ # 1. Model Introduction
55
+
56
+ - Orion-14B series models are open-source multilingual large language models trained from scratch by OrionStarAI. The base model is trained on 2.5T multilingual corpus, including Chinese, English, Japanese, Korean, etc, and it exhibits superior performance in these languages. For details, please refer to [tech report](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf).
57
+
58
+ - The Orion-14B series models exhibit the following features:
59
+ - Among models with 20B-parameter scale level, Orion-14B-Base model shows outstanding performance in comprehensive evaluations.
60
+ - Strong multilingual capabilities, significantly outperforming in Japanese and Korean testsets.
61
+ - The fine-tuned models demonstrate strong adaptability, excelling in human-annotated blind tests.
62
+ - The long-chat version supports extremely long texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k.
63
+ - The quantized versions reduce model size by 70%, improve inference speed by 30%, with performance loss less than 1%.
64
+ <table style="border-collapse: collapse; width: 100%;">
65
+ <tr>
66
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
67
+ <img src="./assets/imgs/opencompass_en.png" alt="opencompass" style="width: 100%; height: auto;">
68
+ </td>
69
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
70
+ <img src="./assets/imgs/model_cap_en.png" alt="modelcap" style="width: 100%; height: auto;">
71
+ </td>
72
+ </tr>
73
+ </table>
74
+
75
+ - Orion-14B series models including:
76
+ - **Orion-14B-Base:** A multilingual large language foundational model with 14 billion parameters, pretrained on a diverse dataset of 2.5 trillion tokens.
77
+ - **Orion-14B-Chat:** A chat-model fine-tuned on a high-quality corpus aims to provide an excellence interactive experience for users in the large model community.
78
+ - **Orion-14B-LongChat:** The long-context version excels at handling extremely lengthy texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k.
79
+ - **Orion-14B-Chat-RAG:** A chat-model fine-tuned on a custom retrieval augmented generation dataset, achieving superior performance in retrieval augmented generation tasks.
80
+ - **Orion-14B-Chat-Plugin:** A chat-model specifically tailored for plugin and function calling tasks, ideal for agent-related scenarios where the LLM acts as a plugin and function call system.
81
+ - **Orion-14B-Base-Int4:** A quantized base model utilizing 4-bit integer weights. It significantly reduces the model size by 70% and increases the inference speed by 30% while incurring a minimal performance loss of only 1%.
82
+ - **Orion-14B-Chat-Int4:** A quantized chat model utilizing 4-bit integer weights.
83
+
84
+
85
+ <a name="model-download"></a><br>
86
+ # 2. Model Download
87
+
88
+ Model release and download links are provided in the table below:
89
+
90
+ | Model Name | HuggingFace Download Links | ModelScope Download Links |
91
+ |-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
92
+ | ⚾Orion-14B-Base | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) |
93
+ | 😛Orion-14B-Chat | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) |
94
+ | 📃Orion-14B-LongChat | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) |
95
+ | 🔎Orion-14B-Chat-RAG | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) |
96
+ | 🔌Orion-14B-Chat-Plugin | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary) |
97
+ | 💼Orion-14B-Base-Int4 | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) |
98
+ | 📦Orion-14B-Chat-Int4 | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) |
99
+
100
+ <a name="model-benchmark"></a><br>
101
+ # 3. Model Benchmarks
102
+
103
+ ## 3.1. Base Model Orion-14B-Base Benchmarks
104
+ ### 3.1.1. LLM evaluation results on examination and professional knowledge
105
+ | Model | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH |
106
+ |--------------------|----------|----------|----------|----------|----------|----------|
107
+ | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 |
108
+ | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 |
109
+ | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 |
110
+ | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 |
111
+ | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 |
112
+ | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** |
113
+
114
+ ### 3.1.2. LLM evaluation results on language understanding and common knowledge
115
+ | Model |RACE-middle|RACE-high |HellaSwag | PIQA | Lambada | WSC |
116
+ |--------------------|----------|----------|----------|----------|----------|----------|
117
+ | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 |
118
+ | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 |
119
+ | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 |
120
+ | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 |
121
+ | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 |
122
+ | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** |
123
+
124
+ ### 3.1.3. LLM evaluation results of OpenCompass testsets
125
+ | Model | Average | Examination | Language | Knowledge | Understanding | Reasoning |
126
+ |------------------|----------|----------|----------|----------|----------|----------|
127
+ | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 |
128
+ | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 |
129
+ | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 |
130
+ | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 |
131
+ | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 |
132
+ |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** |
133
+
134
+ ### 3.1.4. Comparison of LLM performances on Japanese testsets
135
+ | Model |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM |
136
+ |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
137
+ | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 |
138
+ | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 |
139
+ | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 |
140
+ | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 |
141
+ | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 |
142
+ | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 |
143
+ | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 |
144
+ | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 |
145
+ | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** |
146
+
147
+ ### 3.1.5. Comparison of LLM performances on Korean testsets. n = 0 and n = 5 stand for n-shot prompts used in the evaluation
148
+ |Model | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5|
149
+ |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
150
+ | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 |
151
+ | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 |
152
+ | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 |
153
+ | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 |
154
+ | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 |
155
+ | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 |
156
+ |**Orion-14B-Chat**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**|
157
+
158
+ ### 3.1.6. Multilingual evaluation
159
+ | Model | Train Lang | Japanese | Korean | Chinese | English |
160
+ |--------------------|------------|----------|----------|----------|----------|
161
+ | PLaMo-13B | En,Jp | 52.3 | * | * | * |
162
+ | Weblab-10B | En,Jp | 50.7 | * | * | * |
163
+ | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * |
164
+ | StableLM-jp-7B | En,Jp | 51.1 | * | * | * |
165
+ | KoGPT-6B | En,Ko | * | 70.1 | * | * |
166
+ | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * |
167
+ | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 |
168
+ | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 |
169
+ | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 |
170
+ | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** |
171
+ | **Orion-14B-Chat** | Multi | **69.1** | **79.5** | **67.9** | 67.3 |
172
+
173
+
174
+ ## 3.2. Chat Model Orion-14B-Chat Benchmarks
175
+ ### 3.2.1. Chat model subjective evaluation of MTBench
176
+ | Model | First-Turn | Second-Turn | **Average** |
177
+ |----------------------|----------|----------|----------|
178
+ | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 |
179
+ | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 |
180
+ | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 |
181
+ | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 |
182
+ | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** |
183
+ \* use vllm for inference
184
+
185
+ ### 3.2.2. Chat model subjective evaluation of AlignBench
186
+ | Model | Math. | Logi. | Basic. | Chi. | Comp. | Writ. | Role. | Prof. |**Avg.**|
187
+ |--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
188
+ | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 |
189
+ | Qwen-14B-Chat |**4.91**|**4.71**|**6.90**| 6.36 | 6.74 | 6.64 | 6.59 | 6.56 |**5.72**|
190
+ | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 |
191
+ | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 |**7.18**| 6.19 | 6.49 | 6.22 | 4.96 |
192
+ | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 |**6.57**| 7.16 |**7.36**|**7.16**|**6.99**| 5.51 |
193
+ \* use vllm for inference
194
+
195
+ ## 3.3. LongChat Model Orion-14B-LongChat Benchmarks
196
+ ### 3.3.1. LongChat evaluation of LongBench
197
+ | Model | NarrativeQA|MultiFieldQA-en|MultiFieldQA-zh| DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT |RepoBench-P|
198
+ |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
199
+ | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 |
200
+ | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 |
201
+ | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 |
202
+ | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** |
203
+ | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 |
204
+
205
+
206
+ ## 3.4. Chat RAG Model Benchmarks
207
+ ### 3.4.1. LLM evaluation results of self-built RAG testsets
208
+ |Model|Effectiveness of Response(Keyword)|*Effectiveness of Response(subjective evaluation)|Quoting Ability|Fallback Ability|*AutoQA|*Data Extraction|
209
+ |---------------------|------|------|------|------|------|------|
210
+ | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 |
211
+ | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 |
212
+ | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 |
213
+ | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 |
214
+ | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 |
215
+ \* means manual assessment
216
+
217
+ ## 3.5. Chat Plugin Model Orion-14B-Chat-Plugin Benchmarks
218
+ ### 3.5.1. LLM evaluation results of self-built plugin testsets
219
+ |Model |Intent Recognition with Full Params |Intent Recognition with Missing Params |Non-Plugin Invocation Recognition |
220
+ |-----------------------|--------|-----------|--------|
221
+ | Baichuan2-13B-Chat | 25 | 0 | 0 |
222
+ | Qwen-14B-Chat | 55 | 0 | 50 |
223
+ | GPT-4 | **95** | 52.38 | 70 |
224
+ | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** |
225
+
226
+ ## 3.6. Quantized Model Orion-14B-Base-Int4 Benchmarks
227
+ ### 3.6.1. Comparison of before and after quantization
228
+ |Model |Size(GB)|Inference Speed(tokens/s)|C-Eval|CMMLU|MMLU|RACE|HellaSwag|
229
+ |-------------------------|-------|-----|------|------|------|------|------|
230
+ | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 |
231
+ | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 |
232
+
233
+
234
+ <a name="model-inference"></a><br>
235
+ # 4. Model Inference
236
+
237
+ Model weights, source code, and configuration needed for inference are published on Hugging Face, and the download link
238
+ is available in the table at the beginning of this document. We demonstrate various inference methods here, and the
239
+ program will automatically download the necessary resources from Hugging Face.
240
+
241
+ ## 4.1. Python Code
242
+
243
+ ```python
244
+ import torch
245
+ from transformers import AutoModelForCausalLM, AutoTokenizer
246
+ from transformers.generation.utils import GenerationConfig
247
+
248
+ tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True)
249
+ model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto",
250
+ torch_dtype=torch.bfloat16, trust_remote_code=True)
251
+
252
+ model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B")
253
+ messages = [{"role": "user", "content": "Hello, what is your name? "}]
254
+ response = model.chat(tokenizer, messages, streaming=False)
255
+ print(response)
256
+
257
+ ```
258
+
259
+ In the above Python code, the model is loaded with `device_map='auto'` to utilize all available GPUs. To specify the
260
+ device, you can use something like `export CUDA_VISIBLE_DEVICES=0,1` (using GPUs 0 and 1).
261
+
262
+ ## 4.2. Command Line Tool
263
+
264
+ ```shell
265
+ CUDA_VISIBLE_DEVICES=0 python cli_demo.py
266
+ ```
267
+
268
+ This command-line tool is designed for chat scenarios, and thus, it does not support calling the base model.
269
+
270
+ ## 4.3. Direct Script Inference
271
+
272
+ ```shell
273
+
274
+ # base model
275
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt hello
276
+
277
+ # chat model
278
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt hi
279
+
280
+ ```
281
+ <a name="vllm"></a><br>
282
+ ## 4.4. Inference by vllm
283
+
284
+ - Project URL<br>
285
+ https://github.com/vllm-project/vllm
286
+
287
+ - Pull Request<br>
288
+ https://github.com/vllm-project/vllm/pull/2539
289
+
290
+ <a name="llama-cpp"></a><br>
291
+ ## 4.5. Inference by llama.cpp
292
+
293
+ - Project URL<br>
294
+ https://github.com/ggerganov/llama.cpp
295
+
296
+ - Pull Request<br>
297
+ https://github.com/ggerganov/llama.cpp/pull/5118
298
+
299
+ - How to convert to GGUF model
300
+
301
+ ```shell
302
+ python convert-hf-to-gguf.py path/to/Orion-14B-Chat --outfile chat.gguf
303
+ ```
304
+
305
+ - How to run generation
306
+
307
+ ```shell
308
+ ./main --frequency-penalty 0.5 --frequency-penalty 0.5 --top-k 5 --top-p 0.9 -m chat.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
309
+ ```
310
+
311
+ ## 4.6 Example Output
312
+
313
+ ### 4.6.1. Casual Chat
314
+
315
+ `````
316
+ User: Hello
317
+ Orion-14B: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask.
318
+ User: What functions do you have?
319
+ Orion-14B: As an AI language model, I have a wide range of functions and capabilities, including but not limited to:
320
+ Answering general knowledge questions: I can provide information on various topics such as history, science, geography, and more.
321
+ Providing definitions and explanations: I can explain complex concepts and provide definitions for words and phrases.
322
+ Assisting with tasks: I can help with simple tasks like setting reminders, converting units of measurement, and even ordering food from restaurants.
323
+ Generating text: I can write short stories, essays, articles, and other types of content based on prompts given to me.
324
+ Translating languages: I can translate text from one language to another.
325
+ Chatting: I can engage in conversation with users and respond to their queries in a conversational manner.
326
+ Summarizing long texts: I can summarize longer texts like articles, books, and research papers.
327
+ Generating random numbers and names: I can generate random numbers within a specified range and also suggest names based on certain criteria.
328
+ Playing games: I can play simple games like Hangman, Trivia, and more.
329
+ Providing recommendations: I can recommend movies, music, books, and other forms of entertainment based on user preferences.
330
+ These are just some of the many functions that I am capable of performing. If you have a specific task in mind, feel free to ask me about it.
331
+ User: Tell me a joke.
332
+ Orion-14B: Sure, here's a classic one-liner: Why don't scientists trust atoms? Because they make up everything.
333
+ `````
334
+
335
+ ### 4.6.2. Japanese & Korean Chat
336
+
337
+ `````
338
+ User:自己を紹介してください
339
+ Orion-14B:こんにちは、私の名前はChatMaxで、OrionStarによって開発されたAIアシスタントです。私はユーザーに正確で、客観的で、有用な回答を提供し、彼らが問題を解決し、情報を取得するのを助けることができます。
340
+ User:자기소개를 해주세요.
341
+ Orion-14B:안녕하세요, 제 이름은 ChatMax입니다. OrionStar에서 개발한 AI 어시스턴트입니다. 저는 사용자들에게 정확하고 객관적이며 유용한 답변을 제공하여 문제를 해결하고 정보를 얻는 데 도움을 줄 수 있습니다.
342
+ `````
343
+
344
+ <a name="declarations-license"></a><br>
345
+ # 5. Declarations, License
346
+
347
+ ## 5.1. Declarations
348
+
349
+ We strongly urge all users not to use the Orion-14B model for any activities that may harm national or social security or violate the law.
350
+ Additionally, we request users not to use the Orion-14B model for internet services without proper security review and filing.
351
+ We hope all users abide by this principle to ensure that technological development takes place in a regulated and legal environment.
352
+ We have done our best to ensure the compliance of the data used in the model training process. However, despite our
353
+ significant efforts, unforeseen issues may still arise due to the complexity of the model and data. Therefore, if any
354
+ problems arise due to the use of the Orion-14B open-source model, including but not limited to data security
355
+ issues, public opinion risks, or any risks and issues arising from the model being misled, abused, disseminated, or
356
+ improperly utilized, we will not assume any responsibility.
357
+
358
+ ## 5.2. License
359
+
360
+ Community use of the Orion-14B series models
361
+ - For code, please comply with [Apache License Version 2.0](./LICENSE)<br>
362
+ - For model, please comply with [【Orion-14B Series】 Models Community License Agreement](./ModelsCommunityLicenseAgreement)
363
+
364
+
365
+ <a name="company-introduction"></a><br>
366
+ # 6. Company Introduction
367
+
368
+ OrionStar is a leading global service robot solutions company, founded in September 2016. OrionStar is dedicated to
369
+ using artificial intelligence technology to create the next generation of revolutionary robots, allowing people to break
370
+ free from repetitive physical labor and making human work and life more intelligent and enjoyable. Through technology,
371
+ OrionStar aims to make society and the world a better place.
372
+
373
+ OrionStar possesses fully self-developed end-to-end artificial intelligence technologies, such as voice interaction and
374
+ visual navigation. It integrates product development capabilities and technological application capabilities. Based on
375
+ the Orion robotic arm platform, it has launched products such as OrionStar AI Robot Greeting, AI Robot Greeting Mini,
376
+ Lucki, Coffee Master, and established the open platform OrionOS for Orion robots. Following the philosophy of "Born for
377
+ Truly Useful Robots", OrionStar empowers more people through AI technology.
378
+
379
+ **The core strengths of OrionStar lies in possessing end-to-end AI application capabilities,** including big data preprocessing, large model pretraining, fine-tuning, prompt engineering, agent, etc. With comprehensive end-to-end model training capabilities, including systematic data processing workflows and the parallel model training capability of hundreds of GPUs, it has been successfully applied in various industry scenarios such as government affairs, cloud services, international e-commerce, and fast-moving consumer goods.
380
+
381
+ Companies with demands for deploying large-scale model applications are welcome to contact us.<br>
382
+ **Enquiry Hotline: 400-898-7779**<br>
383
+ **E-mail: [email protected]**
384
+
385
+ <div align="center">
386
+ <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" />
387
+ </div>
388
+
389
+
390
+
391
+
392
+