zbenmo commited on
Commit
6d51d65
·
1 Parent(s): 1ed0dbf

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1539.17 +/- 376.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4787d98bd1265d32df785943319be85c59fe8cab037afcb81d81185c14d76f
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36381c6dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36381c6e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36381c6ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36381c6f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f36381ca040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f36381ca0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36381ca160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36381ca1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f36381ca280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36381ca310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36381ca3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36381ca430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f36381c3630>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674637563799820893,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIntAr/mZgNAnkUFwAmpOz2brKk/nOQaP4qDn75xX6O/5oegvv1kTD/thCI/dFgwP8kgWr/gz0e/YbIyP+5pfbtT0m89IGw7v29NRz+AS64/ko4fvyj1ezz1s5G/50EHO7rjfD9n1Bs/Qv0APyw/gL8HxrU/3Gqqv5Y+gr3grJ28kiAIvcG2cL50hAw9TDXkvj++HsD4cfe/v1/zPWQcasDixwQ/0jLcvrqHOb8YJyc/lrqZP3TCUL0iJKq/vs+CwCsGLr/D+THA1/XqP4UJgD4Ik4G/Z9QbP14J/r/mgX8/So3bvcVxAL8ZO/g+AWY/P/GCmz8fK4G+p7HGvh5sVr9akjM/RwIyvqjZSD4DV5a+ldyZv7wmAT9ECig/ywDZvghgEb/4o5u+MJsNP24Xhj+Tlxs/l50tviPnfL9i4j8/uuN8P+VH0r9C/QA/LD+Av3v7lz9vC4e/i3hEPoG6IT+CCZ0/wQnsPp5GR7+iZ7i/Il0xP0q+Qj6bc6Q/n9x3vYoeor8Ex3I9oZG/Pm1n8L+5PT2/+XBzPvV7qr3fFKM/55EMP+b2qD90JYm/rMkhP7rjfD/lR9K/Qv0APyw/gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHMjS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEM2HvQAAAABp9fO/AAAAAMYMmb0AAAAALlD3PwAAAABuEw++AAAAAICz7z8AAAAAfXUVvQAAAABpdfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGK0SNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAYYJDwAAAAAtTTdvwAAAAD/MpK9AAAAACxy9j8AAAAAvvs0PQAAAACtyfY/AAAAACcUKr0AAAAAPqbmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHj/bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDtVdO9AAAAAF2R9r8AAAAAq3hLPQAAAADJIu4/AAAAACAUBb4AAAAA/YL8PwAAAADZe8k9AAAAACUR4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAagge2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkH/LPQAAAABbOfu/AAAAACUr3zsAAAAAyB3bPwAAAACinnE8AAAAAO1v6D8AAAAAlvNmPAAAAADIg/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dbxvvSc+MAWyUTegDjAF0lEdApx2XR3NcGHV9lChoBkdAnucryxzJZGgHTegDaAhHQKcdq5hjOLR1fZQoaAZHQJ0O0TTOPeZoB03oA2gIR0CnHo0I1LrYdX2UKGgGR0CVbUSkCV8kaAdN6ANoCEdApylCKekHlnV9lChoBkdAmJA1qBVdX2gHTegDaAhHQKcpqxyn1nN1fZQoaAZHQJnZ4OavzOJoB03oA2gIR0CnKb9xZMcqdX2UKGgGR0Cb8TUeuFHsaAdN6ANoCEdApyqeZb6gunV9lChoBkdAnPxESVW0Z2gHTegDaAhHQKc1aIvalDZ1fZQoaAZHQJuRiEM9bHJoB03oA2gIR0CnNdJTuOS4dX2UKGgGR0CR0Wa3qiXZaAdN6ANoCEdApzXmC2+fy3V9lChoBkdAlKBwXMyJsWgHTegDaAhHQKc2wk/r0J51fZQoaAZHQJ0+wwmE5ABoB03oA2gIR0CnQZbPyCnQdX2UKGgGR0CcjhONYKYzaAdN6ANoCEdAp0IB1aGHpXV9lChoBkdAnXfkf9xZMmgHTegDaAhHQKdCFcHGCI11fZQoaAZHQJRpinTAnD1oB03oA2gIR0CnQu8dHUc5dX2UKGgGR0CYsdmzjWCmaAdN6ANoCEdAp020xsVLz3V9lChoBkdAmplVKCg9NmgHTegDaAhHQKdOIIldC3R1fZQoaAZHQJ4sSmk30f5oB03oA2gIR0CnTjYQz1sddX2UKGgGR0CX9EdDpkf+aAdN6ANoCEdAp08YgNgBtHV9lChoBkdAm4m5SBK+SWgHTegDaAhHQKdZx8a4tpV1fZQoaAZHQJvEettALRdoB03oA2gIR0CnWizz3AVPdX2UKGgGR0CXJDRhMJyAaAdN6ANoCEdAp1pAZhrnDHV9lChoBkdAlRx6O1fE42gHTegDaAhHQKdbIS1Vo6F1fZQoaAZHQJuAwY77sOZoB03oA2gIR0CnZbqVY6n0dX2UKGgGR0CaUXo/A0sOaAdN6ANoCEdAp2Yhun/DL3V9lChoBkdAnfq1iSaEz2gHTegDaAhHQKdmNn0TURZ1fZQoaAZHQJ1VqGBWge1oB03oA2gIR0CnZxeuvECOdX2UKGgGR0CgKEHvlU6xaAdN6ANoCEdAp3Ga42CNCXV9lChoBkdAmSB8GPgeimgHTegDaAhHQKdyAu4gA6x1fZQoaAZHQJ9ydF6Rhc9oB03oA2gIR0Cnchbu2JBPdX2UKGgGR0Cd1xYFJQLvaAdN6ANoCEdAp3L6A+Y+jnV9lChoBkdAmwFw0fozN2gHTegDaAhHQKd9q7wKBup1fZQoaAZHQJf4oUHpr1xoB03oA2gIR0CnfhQvHtF8dX2UKGgGR0Cdgw8EV32VaAdN6ANoCEdAp34pML4N7XV9lChoBkdAnKGHu3MINWgHTegDaAhHQKd/D+ee4Cp1fZQoaAZHQJdcA4uK4x1oB03oA2gIR0CnicrCemNzdX2UKGgGR0CWdWtqHoHLaAdN6ANoCEdAp4oxnjABUHV9lChoBkdAkDW6Y/mknGgHTegDaAhHQKeKRTrE9+x1fZQoaAZHQJY+32Xb/OtoB03oA2gIR0CniyS9VWCFdX2UKGgGR0CeE9iF0xM4aAdN6ANoCEdAp5YtOfukUXV9lChoBkdAmVpOTvAoHGgHTegDaAhHQKeWoiudPLx1fZQoaAZHQJMNkv+OwPloB03oA2gIR0CnlrdzwMH9dX2UKGgGR0Cc1PtCRfWuaAdN6ANoCEdAp5ej1CgK4XV9lChoBkdAmpVvq9oN/mgHTegDaAhHQKeii9Htnf51fZQoaAZHQJdQtSgoPTZoB03oA2gIR0Cnovf6wdKedX2UKGgGR0CZNHrqt5lfaAdN6ANoCEdAp6MMZzgdfnV9lChoBkdAm7Kc+u/1x2gHTegDaAhHQKej7wo9cKR1fZQoaAZHQJ22AI0IkZ9oB03oA2gIR0CnrpDmKZUldX2UKGgGR0CYaLNT987ZaAdN6ANoCEdAp673+AEt/XV9lChoBkdAm01WQjlgdGgHTegDaAhHQKevC8p1A7h1fZQoaAZHQJnQ/5xiobZoB03oA2gIR0Cnr/XUpd8idX2UKGgGR0CZ3oavA44qaAdN6ANoCEdAp7rNFx4pt3V9lChoBkdAmhdaYJE6UGgHTegDaAhHQKe7OpzcRDl1fZQoaAZHQJfDTfwZwXJoB03oA2gIR0Cnu09hqj8DdX2UKGgGR0CbOlRekYXPaAdN6ANoCEdAp7wufChvi3V9lChoBkdAm71zOkcjq2gHTegDaAhHQKfHctPHktF1fZQoaAZHQJ9Ke2PT5O9oB03oA2gIR0Cnx9fnGKhtdX2UKGgGR0CcMn73wkPdaAdN6ANoCEdAp8frUsnRcHV9lChoBkdAnmuPCyhSL2gHTegDaAhHQKfI1ChvitJ1fZQoaAZHQJgPOndfsu5oB03oA2gIR0Cn0+GoBJZodX2UKGgGR0CbnwE1l5GCaAdN6ANoCEdAp9RK+De0onV9lChoBkdAnL7sJ+lTFWgHTegDaAhHQKfUYRradtl1fZQoaAZHQJmrXojfNzNoB03oA2gIR0Cn1Uxz7uUmdX2UKGgGR0CbmJ+Y+jdpaAdN6ANoCEdAp9/187ZFonV9lChoBkdAmzc0t/WlM2gHTegDaAhHQKfgXFtsN2F1fZQoaAZHQJlrqBz3h4toB03oA2gIR0Cn4HDEFW4mdX2UKGgGR0CUc+2rXDm9aAdN6ANoCEdAp+FdNWU8m3V9lChoBkdAlI00BXCCSWgHTegDaAhHQKfsUQEIPbx1fZQoaAZHQJsf35i3G4toB03oA2gIR0Cn7LvUSZjQdX2UKGgGR0CUiuF36hxpaAdN6ANoCEdAp+zStq59VnV9lChoBkdAlurKqsEJSmgHTegDaAhHQKftujTKDCh1fZQoaAZHQJW2nq4YrJ9oB03oA2gIR0Cn+K4U34sVdX2UKGgGR0CQIihdt2s8aAdN6ANoCEdAp/kVbiZOSHV9lChoBkdAl2UURSP2f2gHTegDaAhHQKf5KgyM1j11fZQoaAZHQJdMFWfbsWxoB03oA2gIR0Cn+hM2NvOydX2UKGgGR0CW+224/eLvaAdN6ANoCEdAqAT5x5s0pHV9lChoBkdAmZnQHVwxWWgHTegDaAhHQKgFaRDCxeN1fZQoaAZHQJf6apbUwztoB03oA2gIR0CoBX1l5GBndX2UKGgGR0CawxXAdn01aAdN6ANoCEdAqAZnOMVDbHV9lChoBkdAlMJP1pTMq2gHTegDaAhHQKgRI+zMRpV1fZQoaAZHQJV5esA/9pBoB03oA2gIR0CoEYxIz3yqdX2UKGgGR0CVtV/L1VYIaAdN6ANoCEdAqBGgTh5xBHV9lChoBkdAj+cEtuk1uWgHTegDaAhHQKgSiSlFc6h1fZQoaAZHQJYBuerdWQxoB03oA2gIR0CoHW4pUgjhdX2UKGgGR0CShIsny/bkaAdN6ANoCEdAqB3WTPjXF3V9lChoBkdAkaHxI4EOiGgHTegDaAhHQKgd6vzvqkd1fZQoaAZHQJkfNuO0b99oB03oA2gIR0CoHtaUqx1QdX2UKGgGR0CUHjH3UQTVaAdN6ANoCEdAqCmb9Q40dnV9lChoBkdAmfAvOY6XB2gHTegDaAhHQKgqAaYNRWN1fZQoaAZHQJeCfHmzSkVoB03oA2gIR0CoKhXNcGC7dX2UKGgGR0CXkxZx7zClaAdN6ANoCEdAqCr1ajesP3V9lChoBkdAmXryaNMoMWgHTegDaAhHQKg5cf9P1th1fZQoaAZHQJo9o4Qz1sdoB03oA2gIR0CoOhUAksz3dX2UKGgGR0CYpevPTodNaAdN6ANoCEdAqDo5mXgLqnV9lChoBkdAmhogf+0gKWgHTegDaAhHQKg7m+IMz/J1fZQoaAZHQJCnZ/d69kBoB03HAmgIR0CoRQttqHoHdX2UKGgGR0CVzMfRu0kXaAdN6ANoCEdAqEjwh0QsgHV9lChoBkdAljgRybQTmGgHTegDaAhHQKhJBTaTOgR1fZQoaAZHQICQHwRXfZVoB019AWgIR0CoSaVL8JlbdX2UKGgGR0Carr1A7gbZaAdN6ANoCEdAqEno3zcynHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b6d3b7a4f1acec1bfe8d09bd71dd0e5f780b3e78ac56fd5f956b3337b9319c8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07e91a63eaa40c1110e0498c6d98ee6f222e5b5770c5e9064ac2ecf260a994ce
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36381c6dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36381c6e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36381c6ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36381c6f70>", "_build": "<function ActorCriticPolicy._build at 0x7f36381ca040>", "forward": "<function ActorCriticPolicy.forward at 0x7f36381ca0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36381ca160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36381ca1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36381ca280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36381ca310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36381ca3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36381ca430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36381c3630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674637563799820893, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIntAr/mZgNAnkUFwAmpOz2brKk/nOQaP4qDn75xX6O/5oegvv1kTD/thCI/dFgwP8kgWr/gz0e/YbIyP+5pfbtT0m89IGw7v29NRz+AS64/ko4fvyj1ezz1s5G/50EHO7rjfD9n1Bs/Qv0APyw/gL8HxrU/3Gqqv5Y+gr3grJ28kiAIvcG2cL50hAw9TDXkvj++HsD4cfe/v1/zPWQcasDixwQ/0jLcvrqHOb8YJyc/lrqZP3TCUL0iJKq/vs+CwCsGLr/D+THA1/XqP4UJgD4Ik4G/Z9QbP14J/r/mgX8/So3bvcVxAL8ZO/g+AWY/P/GCmz8fK4G+p7HGvh5sVr9akjM/RwIyvqjZSD4DV5a+ldyZv7wmAT9ECig/ywDZvghgEb/4o5u+MJsNP24Xhj+Tlxs/l50tviPnfL9i4j8/uuN8P+VH0r9C/QA/LD+Av3v7lz9vC4e/i3hEPoG6IT+CCZ0/wQnsPp5GR7+iZ7i/Il0xP0q+Qj6bc6Q/n9x3vYoeor8Ex3I9oZG/Pm1n8L+5PT2/+XBzPvV7qr3fFKM/55EMP+b2qD90JYm/rMkhP7rjfD/lR9K/Qv0APyw/gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHMjS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEM2HvQAAAABp9fO/AAAAAMYMmb0AAAAALlD3PwAAAABuEw++AAAAAICz7z8AAAAAfXUVvQAAAABpdfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGK0SNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAYYJDwAAAAAtTTdvwAAAAD/MpK9AAAAACxy9j8AAAAAvvs0PQAAAACtyfY/AAAAACcUKr0AAAAAPqbmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHj/bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDtVdO9AAAAAF2R9r8AAAAAq3hLPQAAAADJIu4/AAAAACAUBb4AAAAA/YL8PwAAAADZe8k9AAAAACUR4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAagge2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkH/LPQAAAABbOfu/AAAAACUr3zsAAAAAyB3bPwAAAACinnE8AAAAAO1v6D8AAAAAlvNmPAAAAADIg/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dbxvvSc+MAWyUTegDjAF0lEdApx2XR3NcGHV9lChoBkdAnucryxzJZGgHTegDaAhHQKcdq5hjOLR1fZQoaAZHQJ0O0TTOPeZoB03oA2gIR0CnHo0I1LrYdX2UKGgGR0CVbUSkCV8kaAdN6ANoCEdApylCKekHlnV9lChoBkdAmJA1qBVdX2gHTegDaAhHQKcpqxyn1nN1fZQoaAZHQJnZ4OavzOJoB03oA2gIR0CnKb9xZMcqdX2UKGgGR0Cb8TUeuFHsaAdN6ANoCEdApyqeZb6gunV9lChoBkdAnPxESVW0Z2gHTegDaAhHQKc1aIvalDZ1fZQoaAZHQJuRiEM9bHJoB03oA2gIR0CnNdJTuOS4dX2UKGgGR0CR0Wa3qiXZaAdN6ANoCEdApzXmC2+fy3V9lChoBkdAlKBwXMyJsWgHTegDaAhHQKc2wk/r0J51fZQoaAZHQJ0+wwmE5ABoB03oA2gIR0CnQZbPyCnQdX2UKGgGR0CcjhONYKYzaAdN6ANoCEdAp0IB1aGHpXV9lChoBkdAnXfkf9xZMmgHTegDaAhHQKdCFcHGCI11fZQoaAZHQJRpinTAnD1oB03oA2gIR0CnQu8dHUc5dX2UKGgGR0CYsdmzjWCmaAdN6ANoCEdAp020xsVLz3V9lChoBkdAmplVKCg9NmgHTegDaAhHQKdOIIldC3R1fZQoaAZHQJ4sSmk30f5oB03oA2gIR0CnTjYQz1sddX2UKGgGR0CX9EdDpkf+aAdN6ANoCEdAp08YgNgBtHV9lChoBkdAm4m5SBK+SWgHTegDaAhHQKdZx8a4tpV1fZQoaAZHQJvEettALRdoB03oA2gIR0CnWizz3AVPdX2UKGgGR0CXJDRhMJyAaAdN6ANoCEdAp1pAZhrnDHV9lChoBkdAlRx6O1fE42gHTegDaAhHQKdbIS1Vo6F1fZQoaAZHQJuAwY77sOZoB03oA2gIR0CnZbqVY6n0dX2UKGgGR0CaUXo/A0sOaAdN6ANoCEdAp2Yhun/DL3V9lChoBkdAnfq1iSaEz2gHTegDaAhHQKdmNn0TURZ1fZQoaAZHQJ1VqGBWge1oB03oA2gIR0CnZxeuvECOdX2UKGgGR0CgKEHvlU6xaAdN6ANoCEdAp3Ga42CNCXV9lChoBkdAmSB8GPgeimgHTegDaAhHQKdyAu4gA6x1fZQoaAZHQJ9ydF6Rhc9oB03oA2gIR0Cnchbu2JBPdX2UKGgGR0Cd1xYFJQLvaAdN6ANoCEdAp3L6A+Y+jnV9lChoBkdAmwFw0fozN2gHTegDaAhHQKd9q7wKBup1fZQoaAZHQJf4oUHpr1xoB03oA2gIR0CnfhQvHtF8dX2UKGgGR0Cdgw8EV32VaAdN6ANoCEdAp34pML4N7XV9lChoBkdAnKGHu3MINWgHTegDaAhHQKd/D+ee4Cp1fZQoaAZHQJdcA4uK4x1oB03oA2gIR0CnicrCemNzdX2UKGgGR0CWdWtqHoHLaAdN6ANoCEdAp4oxnjABUHV9lChoBkdAkDW6Y/mknGgHTegDaAhHQKeKRTrE9+x1fZQoaAZHQJY+32Xb/OtoB03oA2gIR0CniyS9VWCFdX2UKGgGR0CeE9iF0xM4aAdN6ANoCEdAp5YtOfukUXV9lChoBkdAmVpOTvAoHGgHTegDaAhHQKeWoiudPLx1fZQoaAZHQJMNkv+OwPloB03oA2gIR0CnlrdzwMH9dX2UKGgGR0Cc1PtCRfWuaAdN6ANoCEdAp5ej1CgK4XV9lChoBkdAmpVvq9oN/mgHTegDaAhHQKeii9Htnf51fZQoaAZHQJdQtSgoPTZoB03oA2gIR0Cnovf6wdKedX2UKGgGR0CZNHrqt5lfaAdN6ANoCEdAp6MMZzgdfnV9lChoBkdAm7Kc+u/1x2gHTegDaAhHQKej7wo9cKR1fZQoaAZHQJ22AI0IkZ9oB03oA2gIR0CnrpDmKZUldX2UKGgGR0CYaLNT987ZaAdN6ANoCEdAp673+AEt/XV9lChoBkdAm01WQjlgdGgHTegDaAhHQKevC8p1A7h1fZQoaAZHQJnQ/5xiobZoB03oA2gIR0Cnr/XUpd8idX2UKGgGR0CZ3oavA44qaAdN6ANoCEdAp7rNFx4pt3V9lChoBkdAmhdaYJE6UGgHTegDaAhHQKe7OpzcRDl1fZQoaAZHQJfDTfwZwXJoB03oA2gIR0Cnu09hqj8DdX2UKGgGR0CbOlRekYXPaAdN6ANoCEdAp7wufChvi3V9lChoBkdAm71zOkcjq2gHTegDaAhHQKfHctPHktF1fZQoaAZHQJ9Ke2PT5O9oB03oA2gIR0Cnx9fnGKhtdX2UKGgGR0CcMn73wkPdaAdN6ANoCEdAp8frUsnRcHV9lChoBkdAnmuPCyhSL2gHTegDaAhHQKfI1ChvitJ1fZQoaAZHQJgPOndfsu5oB03oA2gIR0Cn0+GoBJZodX2UKGgGR0CbnwE1l5GCaAdN6ANoCEdAp9RK+De0onV9lChoBkdAnL7sJ+lTFWgHTegDaAhHQKfUYRradtl1fZQoaAZHQJmrXojfNzNoB03oA2gIR0Cn1Uxz7uUmdX2UKGgGR0CbmJ+Y+jdpaAdN6ANoCEdAp9/187ZFonV9lChoBkdAmzc0t/WlM2gHTegDaAhHQKfgXFtsN2F1fZQoaAZHQJlrqBz3h4toB03oA2gIR0Cn4HDEFW4mdX2UKGgGR0CUc+2rXDm9aAdN6ANoCEdAp+FdNWU8m3V9lChoBkdAlI00BXCCSWgHTegDaAhHQKfsUQEIPbx1fZQoaAZHQJsf35i3G4toB03oA2gIR0Cn7LvUSZjQdX2UKGgGR0CUiuF36hxpaAdN6ANoCEdAp+zStq59VnV9lChoBkdAlurKqsEJSmgHTegDaAhHQKftujTKDCh1fZQoaAZHQJW2nq4YrJ9oB03oA2gIR0Cn+K4U34sVdX2UKGgGR0CQIihdt2s8aAdN6ANoCEdAp/kVbiZOSHV9lChoBkdAl2UURSP2f2gHTegDaAhHQKf5KgyM1j11fZQoaAZHQJdMFWfbsWxoB03oA2gIR0Cn+hM2NvOydX2UKGgGR0CW+224/eLvaAdN6ANoCEdAqAT5x5s0pHV9lChoBkdAmZnQHVwxWWgHTegDaAhHQKgFaRDCxeN1fZQoaAZHQJf6apbUwztoB03oA2gIR0CoBX1l5GBndX2UKGgGR0CawxXAdn01aAdN6ANoCEdAqAZnOMVDbHV9lChoBkdAlMJP1pTMq2gHTegDaAhHQKgRI+zMRpV1fZQoaAZHQJV5esA/9pBoB03oA2gIR0CoEYxIz3yqdX2UKGgGR0CVtV/L1VYIaAdN6ANoCEdAqBGgTh5xBHV9lChoBkdAj+cEtuk1uWgHTegDaAhHQKgSiSlFc6h1fZQoaAZHQJYBuerdWQxoB03oA2gIR0CoHW4pUgjhdX2UKGgGR0CShIsny/bkaAdN6ANoCEdAqB3WTPjXF3V9lChoBkdAkaHxI4EOiGgHTegDaAhHQKgd6vzvqkd1fZQoaAZHQJkfNuO0b99oB03oA2gIR0CoHtaUqx1QdX2UKGgGR0CUHjH3UQTVaAdN6ANoCEdAqCmb9Q40dnV9lChoBkdAmfAvOY6XB2gHTegDaAhHQKgqAaYNRWN1fZQoaAZHQJeCfHmzSkVoB03oA2gIR0CoKhXNcGC7dX2UKGgGR0CXkxZx7zClaAdN6ANoCEdAqCr1ajesP3V9lChoBkdAmXryaNMoMWgHTegDaAhHQKg5cf9P1th1fZQoaAZHQJo9o4Qz1sdoB03oA2gIR0CoOhUAksz3dX2UKGgGR0CYpevPTodNaAdN6ANoCEdAqDo5mXgLqnV9lChoBkdAmhogf+0gKWgHTegDaAhHQKg7m+IMz/J1fZQoaAZHQJCnZ/d69kBoB03HAmgIR0CoRQttqHoHdX2UKGgGR0CVzMfRu0kXaAdN6ANoCEdAqEjwh0QsgHV9lChoBkdAljgRybQTmGgHTegDaAhHQKhJBTaTOgR1fZQoaAZHQICQHwRXfZVoB019AWgIR0CoSaVL8JlbdX2UKGgGR0Carr1A7gbZaAdN6ANoCEdAqEno3zcynHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (174 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1539.1692674932535, "std_reward": 376.94346039218146, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T10:18:17.739961"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1d55efd8be7d581b618893e75aef952c78f3af924d4bc775c47e2dc78842cb
3
+ size 2136