{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36381c3630>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674637563799820893, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIntAr/mZgNAnkUFwAmpOz2brKk/nOQaP4qDn75xX6O/5oegvv1kTD/thCI/dFgwP8kgWr/gz0e/YbIyP+5pfbtT0m89IGw7v29NRz+AS64/ko4fvyj1ezz1s5G/50EHO7rjfD9n1Bs/Qv0APyw/gL8HxrU/3Gqqv5Y+gr3grJ28kiAIvcG2cL50hAw9TDXkvj++HsD4cfe/v1/zPWQcasDixwQ/0jLcvrqHOb8YJyc/lrqZP3TCUL0iJKq/vs+CwCsGLr/D+THA1/XqP4UJgD4Ik4G/Z9QbP14J/r/mgX8/So3bvcVxAL8ZO/g+AWY/P/GCmz8fK4G+p7HGvh5sVr9akjM/RwIyvqjZSD4DV5a+ldyZv7wmAT9ECig/ywDZvghgEb/4o5u+MJsNP24Xhj+Tlxs/l50tviPnfL9i4j8/uuN8P+VH0r9C/QA/LD+Av3v7lz9vC4e/i3hEPoG6IT+CCZ0/wQnsPp5GR7+iZ7i/Il0xP0q+Qj6bc6Q/n9x3vYoeor8Ex3I9oZG/Pm1n8L+5PT2/+XBzPvV7qr3fFKM/55EMP+b2qD90JYm/rMkhP7rjfD/lR9K/Qv0APyw/gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHMjS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEM2HvQAAAABp9fO/AAAAAMYMmb0AAAAALlD3PwAAAABuEw++AAAAAICz7z8AAAAAfXUVvQAAAABpdfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGK0SNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAYYJDwAAAAAtTTdvwAAAAD/MpK9AAAAACxy9j8AAAAAvvs0PQAAAACtyfY/AAAAACcUKr0AAAAAPqbmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHj/bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDtVdO9AAAAAF2R9r8AAAAAq3hLPQAAAADJIu4/AAAAACAUBb4AAAAA/YL8PwAAAADZe8k9AAAAACUR4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAagge2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkH/LPQAAAABbOfu/AAAAACUr3zsAAAAAyB3bPwAAAACinnE8AAAAAO1v6D8AAAAAlvNmPAAAAADIg/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dbxvvSc+MAWyUTegDjAF0lEdApx2XR3NcGHV9lChoBkdAnucryxzJZGgHTegDaAhHQKcdq5hjOLR1fZQoaAZHQJ0O0TTOPeZoB03oA2gIR0CnHo0I1LrYdX2UKGgGR0CVbUSkCV8kaAdN6ANoCEdApylCKekHlnV9lChoBkdAmJA1qBVdX2gHTegDaAhHQKcpqxyn1nN1fZQoaAZHQJnZ4OavzOJoB03oA2gIR0CnKb9xZMcqdX2UKGgGR0Cb8TUeuFHsaAdN6ANoCEdApyqeZb6gunV9lChoBkdAnPxESVW0Z2gHTegDaAhHQKc1aIvalDZ1fZQoaAZHQJuRiEM9bHJoB03oA2gIR0CnNdJTuOS4dX2UKGgGR0CR0Wa3qiXZaAdN6ANoCEdApzXmC2+fy3V9lChoBkdAlKBwXMyJsWgHTegDaAhHQKc2wk/r0J51fZQoaAZHQJ0+wwmE5ABoB03oA2gIR0CnQZbPyCnQdX2UKGgGR0CcjhONYKYzaAdN6ANoCEdAp0IB1aGHpXV9lChoBkdAnXfkf9xZMmgHTegDaAhHQKdCFcHGCI11fZQoaAZHQJRpinTAnD1oB03oA2gIR0CnQu8dHUc5dX2UKGgGR0CYsdmzjWCmaAdN6ANoCEdAp020xsVLz3V9lChoBkdAmplVKCg9NmgHTegDaAhHQKdOIIldC3R1fZQoaAZHQJ4sSmk30f5oB03oA2gIR0CnTjYQz1sddX2UKGgGR0CX9EdDpkf+aAdN6ANoCEdAp08YgNgBtHV9lChoBkdAm4m5SBK+SWgHTegDaAhHQKdZx8a4tpV1fZQoaAZHQJvEettALRdoB03oA2gIR0CnWizz3AVPdX2UKGgGR0CXJDRhMJyAaAdN6ANoCEdAp1pAZhrnDHV9lChoBkdAlRx6O1fE42gHTegDaAhHQKdbIS1Vo6F1fZQoaAZHQJuAwY77sOZoB03oA2gIR0CnZbqVY6n0dX2UKGgGR0CaUXo/A0sOaAdN6ANoCEdAp2Yhun/DL3V9lChoBkdAnfq1iSaEz2gHTegDaAhHQKdmNn0TURZ1fZQoaAZHQJ1VqGBWge1oB03oA2gIR0CnZxeuvECOdX2UKGgGR0CgKEHvlU6xaAdN6ANoCEdAp3Ga42CNCXV9lChoBkdAmSB8GPgeimgHTegDaAhHQKdyAu4gA6x1fZQoaAZHQJ9ydF6Rhc9oB03oA2gIR0Cnchbu2JBPdX2UKGgGR0Cd1xYFJQLvaAdN6ANoCEdAp3L6A+Y+jnV9lChoBkdAmwFw0fozN2gHTegDaAhHQKd9q7wKBup1fZQoaAZHQJf4oUHpr1xoB03oA2gIR0CnfhQvHtF8dX2UKGgGR0Cdgw8EV32VaAdN6ANoCEdAp34pML4N7XV9lChoBkdAnKGHu3MINWgHTegDaAhHQKd/D+ee4Cp1fZQoaAZHQJdcA4uK4x1oB03oA2gIR0CnicrCemNzdX2UKGgGR0CWdWtqHoHLaAdN6ANoCEdAp4oxnjABUHV9lChoBkdAkDW6Y/mknGgHTegDaAhHQKeKRTrE9+x1fZQoaAZHQJY+32Xb/OtoB03oA2gIR0CniyS9VWCFdX2UKGgGR0CeE9iF0xM4aAdN6ANoCEdAp5YtOfukUXV9lChoBkdAmVpOTvAoHGgHTegDaAhHQKeWoiudPLx1fZQoaAZHQJMNkv+OwPloB03oA2gIR0CnlrdzwMH9dX2UKGgGR0Cc1PtCRfWuaAdN6ANoCEdAp5ej1CgK4XV9lChoBkdAmpVvq9oN/mgHTegDaAhHQKeii9Htnf51fZQoaAZHQJdQtSgoPTZoB03oA2gIR0Cnovf6wdKedX2UKGgGR0CZNHrqt5lfaAdN6ANoCEdAp6MMZzgdfnV9lChoBkdAm7Kc+u/1x2gHTegDaAhHQKej7wo9cKR1fZQoaAZHQJ22AI0IkZ9oB03oA2gIR0CnrpDmKZUldX2UKGgGR0CYaLNT987ZaAdN6ANoCEdAp673+AEt/XV9lChoBkdAm01WQjlgdGgHTegDaAhHQKevC8p1A7h1fZQoaAZHQJnQ/5xiobZoB03oA2gIR0Cnr/XUpd8idX2UKGgGR0CZ3oavA44qaAdN6ANoCEdAp7rNFx4pt3V9lChoBkdAmhdaYJE6UGgHTegDaAhHQKe7OpzcRDl1fZQoaAZHQJfDTfwZwXJoB03oA2gIR0Cnu09hqj8DdX2UKGgGR0CbOlRekYXPaAdN6ANoCEdAp7wufChvi3V9lChoBkdAm71zOkcjq2gHTegDaAhHQKfHctPHktF1fZQoaAZHQJ9Ke2PT5O9oB03oA2gIR0Cnx9fnGKhtdX2UKGgGR0CcMn73wkPdaAdN6ANoCEdAp8frUsnRcHV9lChoBkdAnmuPCyhSL2gHTegDaAhHQKfI1ChvitJ1fZQoaAZHQJgPOndfsu5oB03oA2gIR0Cn0+GoBJZodX2UKGgGR0CbnwE1l5GCaAdN6ANoCEdAp9RK+De0onV9lChoBkdAnL7sJ+lTFWgHTegDaAhHQKfUYRradtl1fZQoaAZHQJmrXojfNzNoB03oA2gIR0Cn1Uxz7uUmdX2UKGgGR0CbmJ+Y+jdpaAdN6ANoCEdAp9/187ZFonV9lChoBkdAmzc0t/WlM2gHTegDaAhHQKfgXFtsN2F1fZQoaAZHQJlrqBz3h4toB03oA2gIR0Cn4HDEFW4mdX2UKGgGR0CUc+2rXDm9aAdN6ANoCEdAp+FdNWU8m3V9lChoBkdAlI00BXCCSWgHTegDaAhHQKfsUQEIPbx1fZQoaAZHQJsf35i3G4toB03oA2gIR0Cn7LvUSZjQdX2UKGgGR0CUiuF36hxpaAdN6ANoCEdAp+zStq59VnV9lChoBkdAlurKqsEJSmgHTegDaAhHQKftujTKDCh1fZQoaAZHQJW2nq4YrJ9oB03oA2gIR0Cn+K4U34sVdX2UKGgGR0CQIihdt2s8aAdN6ANoCEdAp/kVbiZOSHV9lChoBkdAl2UURSP2f2gHTegDaAhHQKf5KgyM1j11fZQoaAZHQJdMFWfbsWxoB03oA2gIR0Cn+hM2NvOydX2UKGgGR0CW+224/eLvaAdN6ANoCEdAqAT5x5s0pHV9lChoBkdAmZnQHVwxWWgHTegDaAhHQKgFaRDCxeN1fZQoaAZHQJf6apbUwztoB03oA2gIR0CoBX1l5GBndX2UKGgGR0CawxXAdn01aAdN6ANoCEdAqAZnOMVDbHV9lChoBkdAlMJP1pTMq2gHTegDaAhHQKgRI+zMRpV1fZQoaAZHQJV5esA/9pBoB03oA2gIR0CoEYxIz3yqdX2UKGgGR0CVtV/L1VYIaAdN6ANoCEdAqBGgTh5xBHV9lChoBkdAj+cEtuk1uWgHTegDaAhHQKgSiSlFc6h1fZQoaAZHQJYBuerdWQxoB03oA2gIR0CoHW4pUgjhdX2UKGgGR0CShIsny/bkaAdN6ANoCEdAqB3WTPjXF3V9lChoBkdAkaHxI4EOiGgHTegDaAhHQKgd6vzvqkd1fZQoaAZHQJkfNuO0b99oB03oA2gIR0CoHtaUqx1QdX2UKGgGR0CUHjH3UQTVaAdN6ANoCEdAqCmb9Q40dnV9lChoBkdAmfAvOY6XB2gHTegDaAhHQKgqAaYNRWN1fZQoaAZHQJeCfHmzSkVoB03oA2gIR0CoKhXNcGC7dX2UKGgGR0CXkxZx7zClaAdN6ANoCEdAqCr1ajesP3V9lChoBkdAmXryaNMoMWgHTegDaAhHQKg5cf9P1th1fZQoaAZHQJo9o4Qz1sdoB03oA2gIR0CoOhUAksz3dX2UKGgGR0CYpevPTodNaAdN6ANoCEdAqDo5mXgLqnV9lChoBkdAmhogf+0gKWgHTegDaAhHQKg7m+IMz/J1fZQoaAZHQJCnZ/d69kBoB03HAmgIR0CoRQttqHoHdX2UKGgGR0CVzMfRu0kXaAdN6ANoCEdAqEjwh0QsgHV9lChoBkdAljgRybQTmGgHTegDaAhHQKhJBTaTOgR1fZQoaAZHQICQHwRXfZVoB019AWgIR0CoSaVL8JlbdX2UKGgGR0Carr1A7gbZaAdN6ANoCEdAqEno3zcynHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}