--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: type: token-classification name: Token Classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - type: f1 value: 0.8594910162670748 name: F1 --- # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2556 | 1.0 | 525 | 0.1629 | 0.8218 | | 0.1309 | 2.0 | 1050 | 0.1378 | 0.8522 | | 0.0812 | 3.0 | 1575 | 0.1348 | 0.8595 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3