File size: 7,400 Bytes
cceec1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import (
    BartForConditionalGeneration, 
    AutoModelForCausalLM, 
    BertModel, 
    Wav2Vec2Model,
    CLIPModel,
    AutoTokenizer
)
import numpy as np
import random
import copy

class MultiModalModel(nn.Module):
    def __init__(self):
        super(MultiModalModel, self).__init__()
        # 初始化子模型
        self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
        self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
        self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
        self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
        self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')

        # 初始化分词器和处理器
        self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
        self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
        self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
        self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
        self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
    
    def forward(self, task, inputs):
        if task == 'text_generation':
            attention_mask = inputs.attention_mask
            outputs = self.text_generator.generate(
                inputs.input_ids, 
                max_new_tokens=50, 
                pad_token_id=self.text_tokenizer.eos_token_id, 
                attention_mask=attention_mask,
                top_p=0.95,
                top_k=50,
                temperature=1.2,
                do_sample=True
            )
            return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
        elif task == 'code_generation':
            attention_mask = inputs.attention_mask
            outputs = self.code_generator.generate(
                inputs.input_ids, 
                max_new_tokens=50, 
                pad_token_id=self.code_tokenizer.eos_token_id, 
                attention_mask=attention_mask,
                top_p=0.95,
                top_k=50,
                temperature=1.2,
                do_sample=True
            )
            return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
        elif task == 'text_understanding':
            outputs = self.nlp_encoder(**inputs)
            return outputs.last_hidden_state
        elif task == 'speech_recognition':
            outputs = self.speech_encoder(**inputs).logits
            predicted_ids = torch.argmax(outputs, dim=-1)
            transcription = self.speech_processor.batch_decode(predicted_ids)[0]
            return transcription
        elif task == 'vision_understanding':
            outputs = self.vision_encoder.get_image_features(**inputs)
            return outputs

    def save_model(self, save_directory):
        os.makedirs(save_directory, exist_ok=True)
        torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
        self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
        self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
        self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
        self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
        self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))

    def load_model(self, load_directory):
        self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
        self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
        self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
        self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
        self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
        self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))

class EvolutionaryMultiModalNetwork(nn.Module):
    def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super(EvolutionaryMultiModalNetwork, self).__init__()
        self.device = device
        self.multi_modal_model = MultiModalModel().to(self.device)
        self.mutation_params = {
            'mutation_rate': 0.2,  # 增加变异率
            'mutation_scale': 0.05  # 增加变异幅度
        }
    
    def mutate_model(self, model):
        """

        模型参数变异

        """
        for param in model.parameters():
            if param.requires_grad:
                noise = torch.normal(
                    mean=torch.zeros_like(param.data),
                    std=self.mutation_params['mutation_scale']
                ).to(self.device)
                if random.random() < self.mutation_params['mutation_rate']:
                    param.data.add_(noise)
        return model
    
    def evaluate_model(self, model, test_input):
        """

        模型评估

        """
        try:
            with torch.no_grad():
                output = model('text_generation', test_input)
                complexity = sum(p.numel() for p in model.parameters())
                performance = len(output)  # 示例性能评估指标
                return complexity, performance
        except Exception as e:
            print(f"模型评估错误: {e}")
            return 0, 0
    
    def save_models(self, save_dir='./model_checkpoints'):
        """

        保存模型

        """
        os.makedirs(save_dir, exist_ok=True)
        self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
        print(f"模型已保存到 {save_dir}")

    def evolutionary_training(self, epochs=5):
        """

        进化训练

        """
        print("🧬 开始进化训练...")
        
        for epoch in range(epochs):
            print(f"\n🌟 第 {epoch+1} 代:")
            
            # 模型变异
            self.multi_modal_model = self.mutate_model(self.multi_modal_model)
            
            # 模型评估
            test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
            complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
            print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")

def main():
    # 设置随机种子
    torch.manual_seed(42)
    np.random.seed(42)
    random.seed(42)

    # 创建进化多模态神经网络
    evo_network = EvolutionaryMultiModalNetwork()
    
    # 打印模型信息
    evo_network.multi_modal_model.text_generator.config  # 打印模型配置示例
    
    # 进化训练
    evo_network.evolutionary_training(epochs=5)
    
    # 保存模型
    evo_network.save_models()

if __name__ == "__main__":
    main()