Question Answering
Transformers
English
Chinese
multimodal
vqa
text
audio
Eval Results
zeroMN commited on
Commit
a65107a
·
verified ·
1 Parent(s): acd52d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -99,11 +99,73 @@ Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces`
99
  通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。
100
 
101
  ## Uses
102
-
103
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  ### Direct Use
106
-
107
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
108
 
109
  [More Information Needed]
 
99
  通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。
100
 
101
  ## Uses
102
+ ```python
103
+ import os
104
+ import torch
105
+ from model import AutoModel, Config
106
+
107
+ def load_model(model_path, config_path):
108
+ """
109
+ 加载模型权重和配置
110
+ """
111
+ # 加载配置
112
+ if not os.path.exists(config_path):
113
+ raise FileNotFoundError(f"配置文件未找到: {config_path}")
114
+ print(f"加载配置文件: {config_path}")
115
+ config = Config()
116
+
117
+ # 初始化模型
118
+ model = AutoModel(config)
119
+
120
+ # 加载权重
121
+ if not os.path.exists(model_path):
122
+ raise FileNotFoundError(f"模型文件未找到: {model_path}")
123
+ print(f"加载模型权重: {model_path}")
124
+ state_dict = torch.load(model_path, map_location=torch.device("cpu"))
125
+ model.load_state_dict(state_dict)
126
+ model.eval()
127
+ print("模型加载成功并设置为评估模式。")
128
+
129
+ return model, config
130
+
131
+
132
+ def run_inference(model, config):
133
+ """
134
+ 使用模型运行推理
135
+ """
136
+ # 模拟示例输入
137
+ image = torch.randn(1, 3, 224, 224) # 图像输入
138
+ text = torch.randn(1, config.max_position_embeddings, config.hidden_size) # 文本输入
139
+ audio = torch.randn(1, config.audio_sample_rate) # 音频输入
140
+
141
+ # 模型推理
142
+ outputs = model(image, text, audio)
143
+ vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = outputs
144
+
145
+ # 打印结果
146
+ print("\n推理结果:")
147
+ print(f"VQA output shape: {vqa_output.shape}")
148
+ print(f"Caption output shape: {caption_output.shape}")
149
+ print(f"Retrieval output shape: {retrieval_output.shape}")
150
+ print(f"ASR output shape: {asr_output.shape}")
151
+ print(f"Realtime ASR output shape: {realtime_asr_output.shape}")
152
+
153
+ if __name__ == "__main__":
154
+ # 文件路径
155
+ model_path = "AutoModel.pth"
156
+ config_path = "config.json"
157
+
158
+ # 加载模型
159
+ try:
160
+ model, config = load_model(model_path, config_path)
161
+
162
+ # 运行推理
163
+ run_inference(model, config)
164
+ except Exception as e:
165
+ print(f"运行失败: {e}")
166
+ ```
167
 
168
  ### Direct Use
 
169
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
170
 
171
  [More Information Needed]