--- language: - en - zh license: apache-2.0 library_name: zero tags: - multimodal - vqa - text - audio datasets: - synthetic-dataset metrics: - accuracy - bleu - wer model-index: - name: AutoModel results: - task: type: vqa name: Visual Question Answering dataset: type: synthetic-dataset name: Synthetic Multimodal Dataset split: test metrics: - type: accuracy value: 85 pipeline_tag: any-to-any model_index: - name: AutoModel results: - task: type: vqa # 支持视觉问答任务 name: Visual Question Answering dataset: type: synthetdataset name: Synthetic Multimodal Dataset config: default split: test revision: main metrics: - type: accuracy value: 85.0 name: VQA Accuracy - task: type: automatspeerecognition name: Automatic Speech Recognition dataset: type: synthetdataset name: Synthetic Multimodal Dataset config: default split: test revision: main metrics: - type: wer value: 15.3 name: Test WER - task: type: captioning name: Image Captioning dataset: type: synthetdataset name: Synthetic Multimodal Dataset config: default split: test revision: main metrics: - type: bleu value: 27.5 name: BL4 --- ### **3. 提供可下载文件** 确保以下文件已上传到仓库,便于用户下载和运行: - **模型权重文件**(如 `AutoModel.pth`)。 - **配置文件**(如 `config.json`)。 - **依赖文件**(如 `requirements.txt`)。 - **运行脚本**(如 `run_model.py`)。 -- 用户可以直接下载这些文件并运行模型。 --- ### **4. 自动运行模型的限制** Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces` 提供的接口可以解决这一问题。`Spaces` 能够运行托管的推理服务,让用户无需本地配置即可测试模型。 --- ### **推荐方法** - **快速测试**:使用 Hugging Face `Spaces` 创建在线演示。 - **高级使用**:在模型卡中提供完整的运行说明,允许用户本地运行模型。 通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。 ## Uses ```python import os import torch from model import AutoModel, Config def load_model(model_path, config_path): """ 加载模型权重和配置 """ # 加载配置 if not os.path.exists(config_path): raise FileNotFoundError(f"配置文件未找到: {config_path}") print(f"加载配置文件: {config_path}") config = Config() # 初始化模型 model = AutoModel(config) # 加载权重 if not os.path.exists(model_path): raise FileNotFoundError(f"模型文件未找到: {model_path}") print(f"加载模型权重: {model_path}") state_dict = torch.load(model_path, map_location=torch.device("cpu")) model.load_state_dict(state_dict) model.eval() print("模型加载成功并设置为评估模式。") return model, config def run_inference(model, config): """ 使用模型运行推理 """ # 模拟示例输入 image = torch.randn(1, 3, 224, 224) # 图像输入 text = torch.randn(1, config.max_position_embeddings, config.hidden_size) # 文本输入 audio = torch.randn(1, config.audio_sample_rate) # 音频输入 # 模型推理 outputs = model(image, text, audio) vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = outputs # 打印结果 print("\n推理结果:") print(f"VQA output shape: {vqa_output.shape}") print(f"Caption output shape: {caption_output.shape}") print(f"Retrieval output shape: {retrieval_output.shape}") print(f"ASR output shape: {asr_output.shape}") print(f"Realtime ASR output shape: {realtime_asr_output.shape}") if __name__ == "__main__": # 文件路径 model_path = "AutoModel.pth" config_path = "config.json" # 加载模型 try: model, config = load_model(model_path, config_path) # 运行推理 run_inference(model, config) except Exception as e: print(f"运行失败: {e}") ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]