File size: 2,180 Bytes
19e4244 cef553a 9a69816 cef553a 2b6da15 596ae62 2b6da15 596ae62 3dc6644 4f44a02 3dc6644 4f44a02 4dbc985 8390b09 4f44a02 ed21eff 4f44a02 0047dd8 4f44a02 ed21eff 4f44a02 596ae62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: apache-2.0
---
### DISTILBERT RUNNING ON [DEEPSPARSE](https://github.com/neuralmagic/deepsparse) GOES BRHMMMMMMMM. πππ
This model is π
ββββββββ βββββββ ββββββ βββββββ ββββββββ ββββββββ
ββββββββ ββββββββ ββββββββ ββββββββ ββββββββ ββββββββ
ββββββββ ββββββββ ββββββββ ββββββββ ββββββββ ββββββ
ββββββββ βββββββ ββββββββ ββββββββ βββββββββ βββββ
ββββββββ βββ βββ βββ βββ ββ βββββββββ ββββββββ
ββββββββ βββ βββ βββ βββ ββ βββββββββ ββββββββ

### LOOKS LIKE THIS π

### Inference endpoints, outside of outliers (4ms) is avg. latency on 2 vCPUs:

### Handler for access to inference endpoints
```python
class EndpointHandler:
def __init__(self, path=""):
self.pipeline = Pipeline.create(task="text-classification", model_path=path)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:obj:): prediction input text
"""
inputs = data.pop("inputs", data)
start = perf_counter()
prediction = self.pipeline(inputs)
end = perf_counter()
latency = end - start
return {
"labels": prediction.labels,
"scores": prediction.scores,
"latency (secs.)": latency
}
```
Μ·ΜΝ
Μ΅ΝΜ³RΜΆΝΜiΜΈΝΜcΜ΄ΜΜ»kΜΈΜΝyΜ·ΝΜ³
ΜΈΜΜͺ
Μ·ΝΝ |