--- license: apache-2.0 --- ### DISTILBERT RUNNING ON [DEEPSPARSE](https://github.com/neuralmagic/deepsparse) GOES BRHMMMMMMMM. πŸš€πŸš€πŸš€ This model is πŸ‘‡ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β•β•β• β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β•β•β• β–ˆβ–ˆβ•”β•β•β•β•β• β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β• β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β• β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β•šβ•β•β•β•β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•— β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆ β–ˆβ•”β•β•β• β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆ β•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β•šβ•β•β•β•β•β•β• β•šβ•β• β•šβ•β• β•šβ•β• β•šβ•β• β•šβ• β•β•šβ•β•β•β•β•β•β• β•šβ•β•β•β•β•β•β• ![Alt Text](https://media.giphy.com/media/4Hmjz2sqdtASJ2gFMH/giphy.gif) ### LOOKS LIKE THIS πŸ‘‡ ![Imgur](https://imgur.com/gWfX811.jpg) ### Inference endpoints, outside of outliers (4ms) is avg. latency on 2 vCPUs: ![Imgur](https://i.imgur.com/qceSdjZ.png) ### Handler for access to inference endpoints ```python class EndpointHandler: def __init__(self, path=""): self.pipeline = Pipeline.create(task="text-classification", model_path=path) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:obj:): prediction input text """ inputs = data.pop("inputs", data) start = perf_counter() prediction = self.pipeline(inputs) end = perf_counter() latency = end - start return { "labels": prediction.labels, "scores": prediction.scores, "latency (secs.)": latency } ``` ̷͈̍ Μ΅Ν’Μ³RΜΆΝƒΜ™i̸̟͘cΜ΄Μ†Μ»kΜΈΜ‘ΝœyΜ·Ν„Μ³ ̸̚Μͺ Μ·Ν€Ν–