File size: 2,159 Bytes
4fc207e b3b445a 83d3829 c6ba233 83d3829 3186100 c6ba233 079199b c6ba233 079199b c6ba233 b3b445a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
license: cc-by-4.0
---
## SPT-ABSA
We continue to pre-train BERT-base via Sentiment-enhance pre-training (SPT).
- Title: An Empirical Study of Sentiment-Enhanced Pre-Training for Aspect-Based Sentiment Analysis
- Author: Yice Zhang, Yifan Yang, Bin Liang, Shiwei Chen, Bing Qin, and Ruifeng Xu
- Conference: ACL-2023 Finding (Long)
GitHub Repository: https://github.com/HITSZ-HLT/SPT-ABSA
### What Did We Do?
Aspect-Based Sentiment Analysis (ABSA) is an important problem in sentiment analysis.
Its goal is to recognize opinions and sentiments towards specific aspects from user-generated content.
Many research efforts leverage pre-training techniques to learn sentiment-aware representations and achieve significant gains in various ABSA tasks.
We conduct an empirical study of SPT-ABSA to systematically investigate and analyze the effectiveness of the existing approaches.
We mainly concentrate on the following questions:
- (a) what impact do different types of sentiment knowledge have on downstream ABSA tasks?;
- (b) which knowledge integration method is most effective?; and
- (c) does injecting non-sentiment-specific linguistic knowledge (e.g., part-of-speech tags and syntactic relations) into pre-training have positive impacts?
Based on the experimental investigation of these questions, we eventually obtain a powerful sentiment-enhanced pre-trained model.
The powerful sentiment-enhanced pre-trained model has two versions, namely [zhang-yice/spt-absa-bert-400k](https://huggingface.co/zhang-yice/spt-absa-bert-400k) and [zhang-yice/spt-absa-bert-10k](https://huggingface.co/zhang-yice/spt-absa-bert-10k), which integrates three types of knowledge:
- aspect words: masking aspects' context and predicting them.
- review's rating score: rating prediction.
- syntax knowledge:
- part-of-speech,
- dependency direction,
- dependency distance.
### Experimental Results
<img width="75%" alt="image" src="https://github.com/HITSZ-HLT/SPT-ABSA/assets/9134454/38fc2db0-6ccf-47a7-a93c-cf54667e1a23">
<img width="75%" alt="image" src="https://github.com/HITSZ-HLT/SPT-ABSA/assets/9134454/20c5a976-014e-433f-a2ec-4bb259e5a382">
|