Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
widget:
|
4 |
-
- text:
|
|
|
5 |
tags:
|
6 |
- DNA
|
7 |
- biology
|
8 |
- genomics
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
# Plant foundation DNA large language models
|
11 |
|
@@ -38,7 +45,7 @@ Here is a simple code for inference:
|
|
38 |
```python
|
39 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
40 |
|
41 |
-
model_name = 'plant-nucleotide-transformer-promoter_strength_protoplast'
|
42 |
# load model and tokenizer
|
43 |
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
44 |
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
@@ -60,4 +67,4 @@ Detailed training procedure can be found in our manuscript.
|
|
60 |
|
61 |
|
62 |
#### Hardware
|
63 |
-
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
widget:
|
4 |
+
- text: >-
|
5 |
+
AGTCCAGTGGACGACCAGCCACGGCTCCGGTCTGTAGAACCATCGCGGAAACGGCTCGCAAAACTCTAAACAGCGCAAACGATGCGCGCGCCGAAGCAACCCGGCTCTACTTATAAAAACGTCCAACGGTGAGCACCGAGCAGCTACTACTCGTACTCCCCCCACCGATC
|
6 |
tags:
|
7 |
- DNA
|
8 |
- biology
|
9 |
- genomics
|
10 |
+
datasets:
|
11 |
+
- zhangtaolab/plant-multi-species-promoter-strength
|
12 |
+
metrics:
|
13 |
+
- r_squared
|
14 |
+
base_model:
|
15 |
+
- zhangtaolab/plant-nucleotide-transformer-BPE
|
16 |
---
|
17 |
# Plant foundation DNA large language models
|
18 |
|
|
|
45 |
```python
|
46 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
47 |
|
48 |
+
model_name = 'plant-nucleotide-transformer-BPE-promoter_strength_protoplast'
|
49 |
# load model and tokenizer
|
50 |
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
51 |
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
|
|
67 |
|
68 |
|
69 |
#### Hardware
|
70 |
+
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|