Update README and remove temporal file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +3 -0
- README.zh.md +3 -0
- checkpoint-100/README.md +0 -204
- checkpoint-100/adapter_config.json +0 -25
- checkpoint-100/adapter_model.safetensors +0 -3
- checkpoint-100/optimizer.pt +0 -3
- checkpoint-100/rng_state.pth +0 -3
- checkpoint-100/scheduler.pt +0 -3
- checkpoint-100/special_tokens_map.json +0 -18
- checkpoint-100/tokenization_chatglm.py +0 -300
- checkpoint-100/tokenizer.model +0 -3
- checkpoint-100/tokenizer_config.json +0 -41
- checkpoint-100/trainer_state.json +0 -141
- checkpoint-100/training_args.bin +0 -3
- checkpoint-1000/README.md +0 -204
- checkpoint-1000/adapter_config.json +0 -25
- checkpoint-1000/adapter_model.safetensors +0 -3
- checkpoint-1000/optimizer.pt +0 -3
- checkpoint-1000/rng_state.pth +0 -3
- checkpoint-1000/scheduler.pt +0 -3
- checkpoint-1000/special_tokens_map.json +0 -18
- checkpoint-1000/tokenization_chatglm.py +0 -300
- checkpoint-1000/tokenizer.model +0 -3
- checkpoint-1000/tokenizer_config.json +0 -41
- checkpoint-1000/trainer_state.json +0 -1221
- checkpoint-1000/training_args.bin +0 -3
- checkpoint-1100/README.md +0 -204
- checkpoint-1100/adapter_config.json +0 -25
- checkpoint-1100/adapter_model.safetensors +0 -3
- checkpoint-1100/optimizer.pt +0 -3
- checkpoint-1100/rng_state.pth +0 -3
- checkpoint-1100/scheduler.pt +0 -3
- checkpoint-1100/special_tokens_map.json +0 -18
- checkpoint-1100/tokenization_chatglm.py +0 -300
- checkpoint-1100/tokenizer.model +0 -3
- checkpoint-1100/tokenizer_config.json +0 -41
- checkpoint-1100/trainer_state.json +0 -1341
- checkpoint-1100/training_args.bin +0 -3
- checkpoint-200/README.md +0 -204
- checkpoint-200/adapter_config.json +0 -25
- checkpoint-200/adapter_model.safetensors +0 -3
- checkpoint-200/optimizer.pt +0 -3
- checkpoint-200/rng_state.pth +0 -3
- checkpoint-200/scheduler.pt +0 -3
- checkpoint-200/special_tokens_map.json +0 -18
- checkpoint-200/tokenization_chatglm.py +0 -300
- checkpoint-200/tokenizer.model +0 -3
- checkpoint-200/tokenizer_config.json +0 -41
- checkpoint-200/trainer_state.json +0 -261
- checkpoint-200/training_args.bin +0 -3
README.md
CHANGED
@@ -7,10 +7,13 @@ tags:
|
|
7 |
base_model: chatglm3-6b
|
8 |
model-index:
|
9 |
- name: coolshell-llm
|
|
|
10 |
---
|
11 |
|
12 |
# CoolShell LLM <!-- omit from toc -->
|
13 |
|
|
|
|
|
14 |
We express our deepest gratitude to Mr. Chen Hao for his selfless sharing in the internet community, especially in the field of technology.
|
15 |
|
16 |
> An orchid in deep forest won't stop giving out aroma despite nobody appreciating it.
|
|
|
7 |
base_model: chatglm3-6b
|
8 |
model-index:
|
9 |
- name: coolshell-llm
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
# CoolShell LLM <!-- omit from toc -->
|
14 |
|
15 |
+
\[ English | [中文](./README.zh.md) \]
|
16 |
+
|
17 |
We express our deepest gratitude to Mr. Chen Hao for his selfless sharing in the internet community, especially in the field of technology.
|
18 |
|
19 |
> An orchid in deep forest won't stop giving out aroma despite nobody appreciating it.
|
README.zh.md
CHANGED
@@ -7,10 +7,13 @@ tags:
|
|
7 |
base_model: chatglm3-6b
|
8 |
model-index:
|
9 |
- name: coolshell-llm
|
|
|
10 |
---
|
11 |
|
12 |
# CoolShell LLM <!-- omit from toc -->
|
13 |
|
|
|
|
|
14 |
感恩陈皓先生对中文互联网,尤其是技术领域无私的分享。
|
15 |
|
16 |
> 芝兰生于深谷,不以无人而不芳。
|
|
|
7 |
base_model: chatglm3-6b
|
8 |
model-index:
|
9 |
- name: coolshell-llm
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
# CoolShell LLM <!-- omit from toc -->
|
14 |
|
15 |
+
\[ [English](./README.md) | 中文 \]
|
16 |
+
|
17 |
感恩陈皓先生对中文互联网,尤其是技术领域无私的分享。
|
18 |
|
19 |
> 芝兰生于深谷,不以无人而不芳。
|
checkpoint-100/README.md
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: peft
|
3 |
-
base_model: /root/chatglm3-6b
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
202 |
-
### Framework versions
|
203 |
-
|
204 |
-
- PEFT 0.7.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/adapter_config.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/root/chatglm3-6b",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 64.0,
|
13 |
-
"lora_dropout": 0.1,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 32,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"query_key_value"
|
23 |
-
],
|
24 |
-
"task_type": "CAUSAL_LM"
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1f8a01b2ff9ae8d39695c90956fca3c08f1cbc215ff8ec47d39cdb42704f85f7
|
3 |
-
size 31204248
|
|
|
|
|
|
|
|
checkpoint-100/optimizer.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7f89a17984e8f8325a843e199ab06bda3f078c75a4a70fd390368380879c4da9
|
3 |
-
size 62437882
|
|
|
|
|
|
|
|
checkpoint-100/rng_state.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0dabbebc3b7aae0f1e2e08720110c236a4c4ad8bcc4021283756db5a9251a361
|
3 |
-
size 14244
|
|
|
|
|
|
|
|
checkpoint-100/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c5a75a62743becb9bf113e0f626f02da4c2bf599473c2d2862708dd9fbc349c5
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
checkpoint-100/special_tokens_map.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
{
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"content": "<|observation|>",
|
12 |
-
"lstrip": false,
|
13 |
-
"normalized": false,
|
14 |
-
"rstrip": false,
|
15 |
-
"single_word": false
|
16 |
-
}
|
17 |
-
]
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/tokenization_chatglm.py
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from typing import List, Optional, Union, Dict
|
5 |
-
from sentencepiece import SentencePieceProcessor
|
6 |
-
from transformers import PreTrainedTokenizer
|
7 |
-
from transformers.utils import logging, PaddingStrategy
|
8 |
-
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
-
|
10 |
-
|
11 |
-
class SPTokenizer:
|
12 |
-
def __init__(self, model_path: str):
|
13 |
-
# reload tokenizer
|
14 |
-
assert os.path.isfile(model_path), model_path
|
15 |
-
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
-
|
17 |
-
# BOS / EOS token IDs
|
18 |
-
self.n_words: int = self.sp_model.vocab_size()
|
19 |
-
self.bos_id: int = self.sp_model.bos_id()
|
20 |
-
self.eos_id: int = self.sp_model.eos_id()
|
21 |
-
self.pad_id: int = self.sp_model.unk_id()
|
22 |
-
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
-
|
24 |
-
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
-
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
-
self.special_tokens = {}
|
27 |
-
self.index_special_tokens = {}
|
28 |
-
for token in special_tokens:
|
29 |
-
self.special_tokens[token] = self.n_words
|
30 |
-
self.index_special_tokens[self.n_words] = token
|
31 |
-
self.n_words += 1
|
32 |
-
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
-
|
34 |
-
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
-
if encode_special_tokens:
|
36 |
-
last_index = 0
|
37 |
-
t = []
|
38 |
-
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
-
if last_index < match.start():
|
40 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
-
t.append(s[match.start():match.end()])
|
42 |
-
last_index = match.end()
|
43 |
-
if last_index < len(s):
|
44 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
-
return t
|
46 |
-
else:
|
47 |
-
return self.sp_model.EncodeAsPieces(s)
|
48 |
-
|
49 |
-
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
-
assert type(s) is str
|
51 |
-
t = self.sp_model.encode(s)
|
52 |
-
if bos:
|
53 |
-
t = [self.bos_id] + t
|
54 |
-
if eos:
|
55 |
-
t = t + [self.eos_id]
|
56 |
-
return t
|
57 |
-
|
58 |
-
def decode(self, t: List[int]) -> str:
|
59 |
-
text, buffer = "", []
|
60 |
-
for token in t:
|
61 |
-
if token in self.index_special_tokens:
|
62 |
-
if buffer:
|
63 |
-
text += self.sp_model.decode(buffer)
|
64 |
-
buffer = []
|
65 |
-
text += self.index_special_tokens[token]
|
66 |
-
else:
|
67 |
-
buffer.append(token)
|
68 |
-
if buffer:
|
69 |
-
text += self.sp_model.decode(buffer)
|
70 |
-
return text
|
71 |
-
|
72 |
-
def decode_tokens(self, tokens: List[str]) -> str:
|
73 |
-
text = self.sp_model.DecodePieces(tokens)
|
74 |
-
return text
|
75 |
-
|
76 |
-
def convert_token_to_id(self, token):
|
77 |
-
""" Converts a token (str) in an id using the vocab. """
|
78 |
-
if token in self.special_tokens:
|
79 |
-
return self.special_tokens[token]
|
80 |
-
return self.sp_model.PieceToId(token)
|
81 |
-
|
82 |
-
def convert_id_to_token(self, index):
|
83 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
84 |
-
if index in self.index_special_tokens:
|
85 |
-
return self.index_special_tokens[index]
|
86 |
-
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
87 |
-
return ""
|
88 |
-
return self.sp_model.IdToPiece(index)
|
89 |
-
|
90 |
-
|
91 |
-
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
-
|
94 |
-
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
-
|
96 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
-
**kwargs):
|
98 |
-
self.name = "GLMTokenizer"
|
99 |
-
|
100 |
-
self.vocab_file = vocab_file
|
101 |
-
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
-
self.special_tokens = {
|
103 |
-
"<bos>": self.tokenizer.bos_id,
|
104 |
-
"<eos>": self.tokenizer.eos_id,
|
105 |
-
"<pad>": self.tokenizer.pad_id
|
106 |
-
}
|
107 |
-
self.encode_special_tokens = encode_special_tokens
|
108 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
-
encode_special_tokens=encode_special_tokens,
|
110 |
-
**kwargs)
|
111 |
-
|
112 |
-
def get_command(self, token):
|
113 |
-
if token in self.special_tokens:
|
114 |
-
return self.special_tokens[token]
|
115 |
-
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
116 |
-
return self.tokenizer.special_tokens[token]
|
117 |
-
|
118 |
-
@property
|
119 |
-
def unk_token(self) -> str:
|
120 |
-
return "<unk>"
|
121 |
-
|
122 |
-
@property
|
123 |
-
def pad_token(self) -> str:
|
124 |
-
return "<unk>"
|
125 |
-
|
126 |
-
@property
|
127 |
-
def pad_token_id(self):
|
128 |
-
return self.get_command("<pad>")
|
129 |
-
|
130 |
-
@property
|
131 |
-
def eos_token(self) -> str:
|
132 |
-
return "</s>"
|
133 |
-
|
134 |
-
@property
|
135 |
-
def eos_token_id(self):
|
136 |
-
return self.get_command("<eos>")
|
137 |
-
|
138 |
-
@property
|
139 |
-
def vocab_size(self):
|
140 |
-
return self.tokenizer.n_words
|
141 |
-
|
142 |
-
def get_vocab(self):
|
143 |
-
""" Returns vocab as a dict """
|
144 |
-
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
145 |
-
vocab.update(self.added_tokens_encoder)
|
146 |
-
return vocab
|
147 |
-
|
148 |
-
def _tokenize(self, text, **kwargs):
|
149 |
-
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
-
|
151 |
-
def _convert_token_to_id(self, token):
|
152 |
-
""" Converts a token (str) in an id using the vocab. """
|
153 |
-
return self.tokenizer.convert_token_to_id(token)
|
154 |
-
|
155 |
-
def _convert_id_to_token(self, index):
|
156 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
157 |
-
return self.tokenizer.convert_id_to_token(index)
|
158 |
-
|
159 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
160 |
-
return self.tokenizer.decode_tokens(tokens)
|
161 |
-
|
162 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
163 |
-
"""
|
164 |
-
Save the vocabulary and special tokens file to a directory.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
save_directory (`str`):
|
168 |
-
The directory in which to save the vocabulary.
|
169 |
-
filename_prefix (`str`, *optional*):
|
170 |
-
An optional prefix to add to the named of the saved files.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
if os.path.isdir(save_directory):
|
176 |
-
vocab_file = os.path.join(
|
177 |
-
save_directory, self.vocab_files_names["vocab_file"]
|
178 |
-
)
|
179 |
-
else:
|
180 |
-
vocab_file = save_directory
|
181 |
-
|
182 |
-
with open(self.vocab_file, 'rb') as fin:
|
183 |
-
proto_str = fin.read()
|
184 |
-
|
185 |
-
with open(vocab_file, "wb") as writer:
|
186 |
-
writer.write(proto_str)
|
187 |
-
|
188 |
-
return (vocab_file,)
|
189 |
-
|
190 |
-
def get_prefix_tokens(self):
|
191 |
-
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
192 |
-
return prefix_tokens
|
193 |
-
|
194 |
-
def build_single_message(self, role, metadata, message):
|
195 |
-
assert role in ["system", "user", "assistant", "observation"], role
|
196 |
-
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
197 |
-
message_tokens = self.tokenizer.encode(message)
|
198 |
-
tokens = role_tokens + message_tokens
|
199 |
-
return tokens
|
200 |
-
|
201 |
-
def build_chat_input(self, query, history=None, role="user"):
|
202 |
-
if history is None:
|
203 |
-
history = []
|
204 |
-
input_ids = []
|
205 |
-
for item in history:
|
206 |
-
content = item["content"]
|
207 |
-
if item["role"] == "system" and "tools" in item:
|
208 |
-
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
209 |
-
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
210 |
-
input_ids.extend(self.build_single_message(role, "", query))
|
211 |
-
input_ids.extend([self.get_command("<|assistant|>")])
|
212 |
-
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
-
|
214 |
-
def build_inputs_with_special_tokens(
|
215 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
-
) -> List[int]:
|
217 |
-
"""
|
218 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
-
adding special tokens. A BERT sequence has the following format:
|
220 |
-
|
221 |
-
- single sequence: `[CLS] X [SEP]`
|
222 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
223 |
-
|
224 |
-
Args:
|
225 |
-
token_ids_0 (`List[int]`):
|
226 |
-
List of IDs to which the special tokens will be added.
|
227 |
-
token_ids_1 (`List[int]`, *optional*):
|
228 |
-
Optional second list of IDs for sequence pairs.
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
-
"""
|
233 |
-
prefix_tokens = self.get_prefix_tokens()
|
234 |
-
token_ids_0 = prefix_tokens + token_ids_0
|
235 |
-
if token_ids_1 is not None:
|
236 |
-
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
237 |
-
return token_ids_0
|
238 |
-
|
239 |
-
def _pad(
|
240 |
-
self,
|
241 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
242 |
-
max_length: Optional[int] = None,
|
243 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
244 |
-
pad_to_multiple_of: Optional[int] = None,
|
245 |
-
return_attention_mask: Optional[bool] = None,
|
246 |
-
) -> dict:
|
247 |
-
"""
|
248 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
249 |
-
|
250 |
-
Args:
|
251 |
-
encoded_inputs:
|
252 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
253 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
254 |
-
Will truncate by taking into account the special tokens.
|
255 |
-
padding_strategy: PaddingStrategy to use for padding.
|
256 |
-
|
257 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
258 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
259 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
260 |
-
The tokenizer padding sides are defined in self.padding_side:
|
261 |
-
|
262 |
-
- 'left': pads on the left of the sequences
|
263 |
-
- 'right': pads on the right of the sequences
|
264 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
265 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
266 |
-
`>= 7.5` (Volta).
|
267 |
-
return_attention_mask:
|
268 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
269 |
-
"""
|
270 |
-
# Load from model defaults
|
271 |
-
assert self.padding_side == "left"
|
272 |
-
|
273 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
274 |
-
seq_length = len(required_input)
|
275 |
-
|
276 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
277 |
-
max_length = len(required_input)
|
278 |
-
|
279 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
280 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
281 |
-
|
282 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
283 |
-
|
284 |
-
# Initialize attention mask if not present.
|
285 |
-
if "attention_mask" not in encoded_inputs:
|
286 |
-
encoded_inputs["attention_mask"] = [1] * seq_length
|
287 |
-
|
288 |
-
if "position_ids" not in encoded_inputs:
|
289 |
-
encoded_inputs["position_ids"] = list(range(seq_length))
|
290 |
-
|
291 |
-
if needs_to_be_padded:
|
292 |
-
difference = max_length - len(required_input)
|
293 |
-
|
294 |
-
if "attention_mask" in encoded_inputs:
|
295 |
-
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
296 |
-
if "position_ids" in encoded_inputs:
|
297 |
-
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
298 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
-
|
300 |
-
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
-
size 1018370
|
|
|
|
|
|
|
|
checkpoint-100/tokenizer_config.json
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"64795": {
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"64797": {
|
12 |
-
"content": "<|observation|>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"additional_special_tokens": [
|
21 |
-
"<|user|>",
|
22 |
-
"<|observation|>"
|
23 |
-
],
|
24 |
-
"auto_map": {
|
25 |
-
"AutoTokenizer": [
|
26 |
-
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
-
null
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"clean_up_tokenization_spaces": false,
|
31 |
-
"do_lower_case": false,
|
32 |
-
"encode_special_tokens": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"model_max_length": 1000000000000000019884624838656,
|
35 |
-
"pad_token": "<unk>",
|
36 |
-
"padding_side": "right",
|
37 |
-
"remove_space": false,
|
38 |
-
"split_special_tokens": false,
|
39 |
-
"tokenizer_class": "ChatGLMTokenizer",
|
40 |
-
"unk_token": "<unk>"
|
41 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/trainer_state.json
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 2.2727272727272725,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 100,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.11,
|
13 |
-
"learning_rate": 0.001999898043009433,
|
14 |
-
"loss": 4.5094,
|
15 |
-
"step": 5
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"epoch": 0.23,
|
19 |
-
"learning_rate": 0.0019995921928281893,
|
20 |
-
"loss": 3.8047,
|
21 |
-
"step": 10
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"epoch": 0.34,
|
25 |
-
"learning_rate": 0.001999082511823396,
|
26 |
-
"loss": 3.8813,
|
27 |
-
"step": 15
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"epoch": 0.45,
|
31 |
-
"learning_rate": 0.0019983691039261358,
|
32 |
-
"loss": 3.7188,
|
33 |
-
"step": 20
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"epoch": 0.57,
|
37 |
-
"learning_rate": 0.0019974521146102534,
|
38 |
-
"loss": 3.6695,
|
39 |
-
"step": 25
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"epoch": 0.68,
|
43 |
-
"learning_rate": 0.001996331730862691,
|
44 |
-
"loss": 3.7078,
|
45 |
-
"step": 30
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 0.8,
|
49 |
-
"learning_rate": 0.0019950081811453595,
|
50 |
-
"loss": 3.6844,
|
51 |
-
"step": 35
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.91,
|
55 |
-
"learning_rate": 0.0019934817353485504,
|
56 |
-
"loss": 3.6961,
|
57 |
-
"step": 40
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"epoch": 1.02,
|
61 |
-
"learning_rate": 0.0019917527047359027,
|
62 |
-
"loss": 3.5758,
|
63 |
-
"step": 45
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"epoch": 1.14,
|
67 |
-
"learning_rate": 0.001989821441880933,
|
68 |
-
"loss": 3.4102,
|
69 |
-
"step": 50
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"epoch": 1.25,
|
73 |
-
"learning_rate": 0.0019876883405951376,
|
74 |
-
"loss": 3.3984,
|
75 |
-
"step": 55
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"epoch": 1.36,
|
79 |
-
"learning_rate": 0.001985353835847693,
|
80 |
-
"loss": 3.3602,
|
81 |
-
"step": 60
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"epoch": 1.48,
|
85 |
-
"learning_rate": 0.0019828184036767556,
|
86 |
-
"loss": 3.4461,
|
87 |
-
"step": 65
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"epoch": 1.59,
|
91 |
-
"learning_rate": 0.0019800825610923932,
|
92 |
-
"loss": 3.3461,
|
93 |
-
"step": 70
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 1.7,
|
97 |
-
"learning_rate": 0.0019771468659711597,
|
98 |
-
"loss": 3.4172,
|
99 |
-
"step": 75
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"epoch": 1.82,
|
103 |
-
"learning_rate": 0.0019740119169423336,
|
104 |
-
"loss": 3.4359,
|
105 |
-
"step": 80
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"epoch": 1.93,
|
109 |
-
"learning_rate": 0.0019706783532658523,
|
110 |
-
"loss": 3.5141,
|
111 |
-
"step": 85
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"epoch": 2.05,
|
115 |
-
"learning_rate": 0.001967146854701957,
|
116 |
-
"loss": 3.2242,
|
117 |
-
"step": 90
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"epoch": 2.16,
|
121 |
-
"learning_rate": 0.0019634181413725788,
|
122 |
-
"loss": 3.0227,
|
123 |
-
"step": 95
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"epoch": 2.27,
|
127 |
-
"learning_rate": 0.0019594929736144974,
|
128 |
-
"loss": 2.8984,
|
129 |
-
"step": 100
|
130 |
-
}
|
131 |
-
],
|
132 |
-
"logging_steps": 5,
|
133 |
-
"max_steps": 1100,
|
134 |
-
"num_input_tokens_seen": 0,
|
135 |
-
"num_train_epochs": 25,
|
136 |
-
"save_steps": 100,
|
137 |
-
"total_flos": 5.099717548376064e+16,
|
138 |
-
"train_batch_size": 4,
|
139 |
-
"trial_name": null,
|
140 |
-
"trial_params": null
|
141 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-100/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fef6a3ae006ec4c51dbcf0a3e569288ca5ab1bbc97f41768934c32153b03277c
|
3 |
-
size 4920
|
|
|
|
|
|
|
|
checkpoint-1000/README.md
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: peft
|
3 |
-
base_model: /root/chatglm3-6b
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
202 |
-
### Framework versions
|
203 |
-
|
204 |
-
- PEFT 0.7.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/adapter_config.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/root/chatglm3-6b",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 64.0,
|
13 |
-
"lora_dropout": 0.1,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 32,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"query_key_value"
|
23 |
-
],
|
24 |
-
"task_type": "CAUSAL_LM"
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:323caf0b1e8894e4ef8b0dbe356d83adafb2f8672a02f89fb8729684fbf30c82
|
3 |
-
size 31204248
|
|
|
|
|
|
|
|
checkpoint-1000/optimizer.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:914475ddbfdc97f3d9f8637d5b05f797d202f9a60e23df9d28710afb7e06205a
|
3 |
-
size 62437882
|
|
|
|
|
|
|
|
checkpoint-1000/rng_state.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c1073cb8b57930e10d4affaf055d83ef268bea78a4de9ff17cd6d0203574a40d
|
3 |
-
size 14244
|
|
|
|
|
|
|
|
checkpoint-1000/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bed216a1f1980adb444c4a55e2b348e6b6c8174e1a232afea7a11177b3480627
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
checkpoint-1000/special_tokens_map.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
{
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"content": "<|observation|>",
|
12 |
-
"lstrip": false,
|
13 |
-
"normalized": false,
|
14 |
-
"rstrip": false,
|
15 |
-
"single_word": false
|
16 |
-
}
|
17 |
-
]
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/tokenization_chatglm.py
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from typing import List, Optional, Union, Dict
|
5 |
-
from sentencepiece import SentencePieceProcessor
|
6 |
-
from transformers import PreTrainedTokenizer
|
7 |
-
from transformers.utils import logging, PaddingStrategy
|
8 |
-
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
-
|
10 |
-
|
11 |
-
class SPTokenizer:
|
12 |
-
def __init__(self, model_path: str):
|
13 |
-
# reload tokenizer
|
14 |
-
assert os.path.isfile(model_path), model_path
|
15 |
-
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
-
|
17 |
-
# BOS / EOS token IDs
|
18 |
-
self.n_words: int = self.sp_model.vocab_size()
|
19 |
-
self.bos_id: int = self.sp_model.bos_id()
|
20 |
-
self.eos_id: int = self.sp_model.eos_id()
|
21 |
-
self.pad_id: int = self.sp_model.unk_id()
|
22 |
-
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
-
|
24 |
-
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
-
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
-
self.special_tokens = {}
|
27 |
-
self.index_special_tokens = {}
|
28 |
-
for token in special_tokens:
|
29 |
-
self.special_tokens[token] = self.n_words
|
30 |
-
self.index_special_tokens[self.n_words] = token
|
31 |
-
self.n_words += 1
|
32 |
-
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
-
|
34 |
-
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
-
if encode_special_tokens:
|
36 |
-
last_index = 0
|
37 |
-
t = []
|
38 |
-
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
-
if last_index < match.start():
|
40 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
-
t.append(s[match.start():match.end()])
|
42 |
-
last_index = match.end()
|
43 |
-
if last_index < len(s):
|
44 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
-
return t
|
46 |
-
else:
|
47 |
-
return self.sp_model.EncodeAsPieces(s)
|
48 |
-
|
49 |
-
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
-
assert type(s) is str
|
51 |
-
t = self.sp_model.encode(s)
|
52 |
-
if bos:
|
53 |
-
t = [self.bos_id] + t
|
54 |
-
if eos:
|
55 |
-
t = t + [self.eos_id]
|
56 |
-
return t
|
57 |
-
|
58 |
-
def decode(self, t: List[int]) -> str:
|
59 |
-
text, buffer = "", []
|
60 |
-
for token in t:
|
61 |
-
if token in self.index_special_tokens:
|
62 |
-
if buffer:
|
63 |
-
text += self.sp_model.decode(buffer)
|
64 |
-
buffer = []
|
65 |
-
text += self.index_special_tokens[token]
|
66 |
-
else:
|
67 |
-
buffer.append(token)
|
68 |
-
if buffer:
|
69 |
-
text += self.sp_model.decode(buffer)
|
70 |
-
return text
|
71 |
-
|
72 |
-
def decode_tokens(self, tokens: List[str]) -> str:
|
73 |
-
text = self.sp_model.DecodePieces(tokens)
|
74 |
-
return text
|
75 |
-
|
76 |
-
def convert_token_to_id(self, token):
|
77 |
-
""" Converts a token (str) in an id using the vocab. """
|
78 |
-
if token in self.special_tokens:
|
79 |
-
return self.special_tokens[token]
|
80 |
-
return self.sp_model.PieceToId(token)
|
81 |
-
|
82 |
-
def convert_id_to_token(self, index):
|
83 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
84 |
-
if index in self.index_special_tokens:
|
85 |
-
return self.index_special_tokens[index]
|
86 |
-
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
87 |
-
return ""
|
88 |
-
return self.sp_model.IdToPiece(index)
|
89 |
-
|
90 |
-
|
91 |
-
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
-
|
94 |
-
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
-
|
96 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
-
**kwargs):
|
98 |
-
self.name = "GLMTokenizer"
|
99 |
-
|
100 |
-
self.vocab_file = vocab_file
|
101 |
-
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
-
self.special_tokens = {
|
103 |
-
"<bos>": self.tokenizer.bos_id,
|
104 |
-
"<eos>": self.tokenizer.eos_id,
|
105 |
-
"<pad>": self.tokenizer.pad_id
|
106 |
-
}
|
107 |
-
self.encode_special_tokens = encode_special_tokens
|
108 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
-
encode_special_tokens=encode_special_tokens,
|
110 |
-
**kwargs)
|
111 |
-
|
112 |
-
def get_command(self, token):
|
113 |
-
if token in self.special_tokens:
|
114 |
-
return self.special_tokens[token]
|
115 |
-
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
116 |
-
return self.tokenizer.special_tokens[token]
|
117 |
-
|
118 |
-
@property
|
119 |
-
def unk_token(self) -> str:
|
120 |
-
return "<unk>"
|
121 |
-
|
122 |
-
@property
|
123 |
-
def pad_token(self) -> str:
|
124 |
-
return "<unk>"
|
125 |
-
|
126 |
-
@property
|
127 |
-
def pad_token_id(self):
|
128 |
-
return self.get_command("<pad>")
|
129 |
-
|
130 |
-
@property
|
131 |
-
def eos_token(self) -> str:
|
132 |
-
return "</s>"
|
133 |
-
|
134 |
-
@property
|
135 |
-
def eos_token_id(self):
|
136 |
-
return self.get_command("<eos>")
|
137 |
-
|
138 |
-
@property
|
139 |
-
def vocab_size(self):
|
140 |
-
return self.tokenizer.n_words
|
141 |
-
|
142 |
-
def get_vocab(self):
|
143 |
-
""" Returns vocab as a dict """
|
144 |
-
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
145 |
-
vocab.update(self.added_tokens_encoder)
|
146 |
-
return vocab
|
147 |
-
|
148 |
-
def _tokenize(self, text, **kwargs):
|
149 |
-
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
-
|
151 |
-
def _convert_token_to_id(self, token):
|
152 |
-
""" Converts a token (str) in an id using the vocab. """
|
153 |
-
return self.tokenizer.convert_token_to_id(token)
|
154 |
-
|
155 |
-
def _convert_id_to_token(self, index):
|
156 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
157 |
-
return self.tokenizer.convert_id_to_token(index)
|
158 |
-
|
159 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
160 |
-
return self.tokenizer.decode_tokens(tokens)
|
161 |
-
|
162 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
163 |
-
"""
|
164 |
-
Save the vocabulary and special tokens file to a directory.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
save_directory (`str`):
|
168 |
-
The directory in which to save the vocabulary.
|
169 |
-
filename_prefix (`str`, *optional*):
|
170 |
-
An optional prefix to add to the named of the saved files.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
if os.path.isdir(save_directory):
|
176 |
-
vocab_file = os.path.join(
|
177 |
-
save_directory, self.vocab_files_names["vocab_file"]
|
178 |
-
)
|
179 |
-
else:
|
180 |
-
vocab_file = save_directory
|
181 |
-
|
182 |
-
with open(self.vocab_file, 'rb') as fin:
|
183 |
-
proto_str = fin.read()
|
184 |
-
|
185 |
-
with open(vocab_file, "wb") as writer:
|
186 |
-
writer.write(proto_str)
|
187 |
-
|
188 |
-
return (vocab_file,)
|
189 |
-
|
190 |
-
def get_prefix_tokens(self):
|
191 |
-
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
192 |
-
return prefix_tokens
|
193 |
-
|
194 |
-
def build_single_message(self, role, metadata, message):
|
195 |
-
assert role in ["system", "user", "assistant", "observation"], role
|
196 |
-
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
197 |
-
message_tokens = self.tokenizer.encode(message)
|
198 |
-
tokens = role_tokens + message_tokens
|
199 |
-
return tokens
|
200 |
-
|
201 |
-
def build_chat_input(self, query, history=None, role="user"):
|
202 |
-
if history is None:
|
203 |
-
history = []
|
204 |
-
input_ids = []
|
205 |
-
for item in history:
|
206 |
-
content = item["content"]
|
207 |
-
if item["role"] == "system" and "tools" in item:
|
208 |
-
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
209 |
-
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
210 |
-
input_ids.extend(self.build_single_message(role, "", query))
|
211 |
-
input_ids.extend([self.get_command("<|assistant|>")])
|
212 |
-
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
-
|
214 |
-
def build_inputs_with_special_tokens(
|
215 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
-
) -> List[int]:
|
217 |
-
"""
|
218 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
-
adding special tokens. A BERT sequence has the following format:
|
220 |
-
|
221 |
-
- single sequence: `[CLS] X [SEP]`
|
222 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
223 |
-
|
224 |
-
Args:
|
225 |
-
token_ids_0 (`List[int]`):
|
226 |
-
List of IDs to which the special tokens will be added.
|
227 |
-
token_ids_1 (`List[int]`, *optional*):
|
228 |
-
Optional second list of IDs for sequence pairs.
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
-
"""
|
233 |
-
prefix_tokens = self.get_prefix_tokens()
|
234 |
-
token_ids_0 = prefix_tokens + token_ids_0
|
235 |
-
if token_ids_1 is not None:
|
236 |
-
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
237 |
-
return token_ids_0
|
238 |
-
|
239 |
-
def _pad(
|
240 |
-
self,
|
241 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
242 |
-
max_length: Optional[int] = None,
|
243 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
244 |
-
pad_to_multiple_of: Optional[int] = None,
|
245 |
-
return_attention_mask: Optional[bool] = None,
|
246 |
-
) -> dict:
|
247 |
-
"""
|
248 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
249 |
-
|
250 |
-
Args:
|
251 |
-
encoded_inputs:
|
252 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
253 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
254 |
-
Will truncate by taking into account the special tokens.
|
255 |
-
padding_strategy: PaddingStrategy to use for padding.
|
256 |
-
|
257 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
258 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
259 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
260 |
-
The tokenizer padding sides are defined in self.padding_side:
|
261 |
-
|
262 |
-
- 'left': pads on the left of the sequences
|
263 |
-
- 'right': pads on the right of the sequences
|
264 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
265 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
266 |
-
`>= 7.5` (Volta).
|
267 |
-
return_attention_mask:
|
268 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
269 |
-
"""
|
270 |
-
# Load from model defaults
|
271 |
-
assert self.padding_side == "left"
|
272 |
-
|
273 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
274 |
-
seq_length = len(required_input)
|
275 |
-
|
276 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
277 |
-
max_length = len(required_input)
|
278 |
-
|
279 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
280 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
281 |
-
|
282 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
283 |
-
|
284 |
-
# Initialize attention mask if not present.
|
285 |
-
if "attention_mask" not in encoded_inputs:
|
286 |
-
encoded_inputs["attention_mask"] = [1] * seq_length
|
287 |
-
|
288 |
-
if "position_ids" not in encoded_inputs:
|
289 |
-
encoded_inputs["position_ids"] = list(range(seq_length))
|
290 |
-
|
291 |
-
if needs_to_be_padded:
|
292 |
-
difference = max_length - len(required_input)
|
293 |
-
|
294 |
-
if "attention_mask" in encoded_inputs:
|
295 |
-
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
296 |
-
if "position_ids" in encoded_inputs:
|
297 |
-
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
298 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
-
|
300 |
-
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
-
size 1018370
|
|
|
|
|
|
|
|
checkpoint-1000/tokenizer_config.json
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"64795": {
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"64797": {
|
12 |
-
"content": "<|observation|>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"additional_special_tokens": [
|
21 |
-
"<|user|>",
|
22 |
-
"<|observation|>"
|
23 |
-
],
|
24 |
-
"auto_map": {
|
25 |
-
"AutoTokenizer": [
|
26 |
-
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
-
null
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"clean_up_tokenization_spaces": false,
|
31 |
-
"do_lower_case": false,
|
32 |
-
"encode_special_tokens": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"model_max_length": 1000000000000000019884624838656,
|
35 |
-
"pad_token": "<unk>",
|
36 |
-
"padding_side": "right",
|
37 |
-
"remove_space": false,
|
38 |
-
"split_special_tokens": false,
|
39 |
-
"tokenizer_class": "ChatGLMTokenizer",
|
40 |
-
"unk_token": "<unk>"
|
41 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/trainer_state.json
DELETED
@@ -1,1221 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 22.727272727272727,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 1000,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.11,
|
13 |
-
"learning_rate": 0.001999898043009433,
|
14 |
-
"loss": 4.5094,
|
15 |
-
"step": 5
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"epoch": 0.23,
|
19 |
-
"learning_rate": 0.0019995921928281893,
|
20 |
-
"loss": 3.8047,
|
21 |
-
"step": 10
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"epoch": 0.34,
|
25 |
-
"learning_rate": 0.001999082511823396,
|
26 |
-
"loss": 3.8813,
|
27 |
-
"step": 15
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"epoch": 0.45,
|
31 |
-
"learning_rate": 0.0019983691039261358,
|
32 |
-
"loss": 3.7188,
|
33 |
-
"step": 20
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"epoch": 0.57,
|
37 |
-
"learning_rate": 0.0019974521146102534,
|
38 |
-
"loss": 3.6695,
|
39 |
-
"step": 25
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"epoch": 0.68,
|
43 |
-
"learning_rate": 0.001996331730862691,
|
44 |
-
"loss": 3.7078,
|
45 |
-
"step": 30
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 0.8,
|
49 |
-
"learning_rate": 0.0019950081811453595,
|
50 |
-
"loss": 3.6844,
|
51 |
-
"step": 35
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.91,
|
55 |
-
"learning_rate": 0.0019934817353485504,
|
56 |
-
"loss": 3.6961,
|
57 |
-
"step": 40
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"epoch": 1.02,
|
61 |
-
"learning_rate": 0.0019917527047359027,
|
62 |
-
"loss": 3.5758,
|
63 |
-
"step": 45
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"epoch": 1.14,
|
67 |
-
"learning_rate": 0.001989821441880933,
|
68 |
-
"loss": 3.4102,
|
69 |
-
"step": 50
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"epoch": 1.25,
|
73 |
-
"learning_rate": 0.0019876883405951376,
|
74 |
-
"loss": 3.3984,
|
75 |
-
"step": 55
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"epoch": 1.36,
|
79 |
-
"learning_rate": 0.001985353835847693,
|
80 |
-
"loss": 3.3602,
|
81 |
-
"step": 60
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"epoch": 1.48,
|
85 |
-
"learning_rate": 0.0019828184036767556,
|
86 |
-
"loss": 3.4461,
|
87 |
-
"step": 65
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"epoch": 1.59,
|
91 |
-
"learning_rate": 0.0019800825610923932,
|
92 |
-
"loss": 3.3461,
|
93 |
-
"step": 70
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 1.7,
|
97 |
-
"learning_rate": 0.0019771468659711597,
|
98 |
-
"loss": 3.4172,
|
99 |
-
"step": 75
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"epoch": 1.82,
|
103 |
-
"learning_rate": 0.0019740119169423336,
|
104 |
-
"loss": 3.4359,
|
105 |
-
"step": 80
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"epoch": 1.93,
|
109 |
-
"learning_rate": 0.0019706783532658523,
|
110 |
-
"loss": 3.5141,
|
111 |
-
"step": 85
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"epoch": 2.05,
|
115 |
-
"learning_rate": 0.001967146854701957,
|
116 |
-
"loss": 3.2242,
|
117 |
-
"step": 90
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"epoch": 2.16,
|
121 |
-
"learning_rate": 0.0019634181413725788,
|
122 |
-
"loss": 3.0227,
|
123 |
-
"step": 95
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"epoch": 2.27,
|
127 |
-
"learning_rate": 0.0019594929736144974,
|
128 |
-
"loss": 2.8984,
|
129 |
-
"step": 100
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"epoch": 2.39,
|
133 |
-
"learning_rate": 0.001955372151824297,
|
134 |
-
"loss": 3.0781,
|
135 |
-
"step": 105
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"epoch": 2.5,
|
139 |
-
"learning_rate": 0.0019510565162951536,
|
140 |
-
"loss": 3.1203,
|
141 |
-
"step": 110
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"epoch": 2.61,
|
145 |
-
"learning_rate": 0.00194654694704549,
|
146 |
-
"loss": 3.1828,
|
147 |
-
"step": 115
|
148 |
-
},
|
149 |
-
{
|
150 |
-
"epoch": 2.73,
|
151 |
-
"learning_rate": 0.0019418443636395248,
|
152 |
-
"loss": 3.0531,
|
153 |
-
"step": 120
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"epoch": 2.84,
|
157 |
-
"learning_rate": 0.001936949724999762,
|
158 |
-
"loss": 3.1523,
|
159 |
-
"step": 125
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"epoch": 2.95,
|
163 |
-
"learning_rate": 0.0019318640292114524,
|
164 |
-
"loss": 3.1156,
|
165 |
-
"step": 130
|
166 |
-
},
|
167 |
-
{
|
168 |
-
"epoch": 3.07,
|
169 |
-
"learning_rate": 0.0019265883133190713,
|
170 |
-
"loss": 2.7844,
|
171 |
-
"step": 135
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"epoch": 3.18,
|
175 |
-
"learning_rate": 0.0019211236531148502,
|
176 |
-
"loss": 2.6711,
|
177 |
-
"step": 140
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"epoch": 3.3,
|
181 |
-
"learning_rate": 0.0019154711629194062,
|
182 |
-
"loss": 2.6609,
|
183 |
-
"step": 145
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"epoch": 3.41,
|
187 |
-
"learning_rate": 0.0019096319953545184,
|
188 |
-
"loss": 2.7531,
|
189 |
-
"step": 150
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"epoch": 3.52,
|
193 |
-
"learning_rate": 0.0019036073411080917,
|
194 |
-
"loss": 2.7977,
|
195 |
-
"step": 155
|
196 |
-
},
|
197 |
-
{
|
198 |
-
"epoch": 3.64,
|
199 |
-
"learning_rate": 0.0018973984286913585,
|
200 |
-
"loss": 2.7914,
|
201 |
-
"step": 160
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"epoch": 3.75,
|
205 |
-
"learning_rate": 0.0018910065241883678,
|
206 |
-
"loss": 2.8188,
|
207 |
-
"step": 165
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"epoch": 3.86,
|
211 |
-
"learning_rate": 0.0018844329309978143,
|
212 |
-
"loss": 2.8945,
|
213 |
-
"step": 170
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"epoch": 3.98,
|
217 |
-
"learning_rate": 0.0018776789895672556,
|
218 |
-
"loss": 2.8883,
|
219 |
-
"step": 175
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"epoch": 4.09,
|
223 |
-
"learning_rate": 0.0018707460771197773,
|
224 |
-
"loss": 2.4617,
|
225 |
-
"step": 180
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"epoch": 4.2,
|
229 |
-
"learning_rate": 0.001863635607373157,
|
230 |
-
"loss": 2.4633,
|
231 |
-
"step": 185
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"epoch": 4.32,
|
235 |
-
"learning_rate": 0.001856349030251589,
|
236 |
-
"loss": 2.5094,
|
237 |
-
"step": 190
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"epoch": 4.43,
|
241 |
-
"learning_rate": 0.0018488878315900226,
|
242 |
-
"loss": 2.432,
|
243 |
-
"step": 195
|
244 |
-
},
|
245 |
-
{
|
246 |
-
"epoch": 4.55,
|
247 |
-
"learning_rate": 0.0018412535328311812,
|
248 |
-
"loss": 2.5648,
|
249 |
-
"step": 200
|
250 |
-
},
|
251 |
-
{
|
252 |
-
"epoch": 4.66,
|
253 |
-
"learning_rate": 0.0018334476907153176,
|
254 |
-
"loss": 2.4836,
|
255 |
-
"step": 205
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"epoch": 4.77,
|
259 |
-
"learning_rate": 0.001825471896962774,
|
260 |
-
"loss": 2.6617,
|
261 |
-
"step": 210
|
262 |
-
},
|
263 |
-
{
|
264 |
-
"epoch": 4.89,
|
265 |
-
"learning_rate": 0.0018173277779494068,
|
266 |
-
"loss": 2.6734,
|
267 |
-
"step": 215
|
268 |
-
},
|
269 |
-
{
|
270 |
-
"epoch": 5.0,
|
271 |
-
"learning_rate": 0.0018090169943749475,
|
272 |
-
"loss": 2.6742,
|
273 |
-
"step": 220
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"epoch": 5.11,
|
277 |
-
"learning_rate": 0.0018005412409243604,
|
278 |
-
"loss": 2.1379,
|
279 |
-
"step": 225
|
280 |
-
},
|
281 |
-
{
|
282 |
-
"epoch": 5.23,
|
283 |
-
"learning_rate": 0.0017919022459222751,
|
284 |
-
"loss": 2.1508,
|
285 |
-
"step": 230
|
286 |
-
},
|
287 |
-
{
|
288 |
-
"epoch": 5.34,
|
289 |
-
"learning_rate": 0.0017831017709805555,
|
290 |
-
"loss": 2.2582,
|
291 |
-
"step": 235
|
292 |
-
},
|
293 |
-
{
|
294 |
-
"epoch": 5.45,
|
295 |
-
"learning_rate": 0.0017741416106390826,
|
296 |
-
"loss": 2.2367,
|
297 |
-
"step": 240
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"epoch": 5.57,
|
301 |
-
"learning_rate": 0.0017650235919998232,
|
302 |
-
"loss": 2.325,
|
303 |
-
"step": 245
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"epoch": 5.68,
|
307 |
-
"learning_rate": 0.0017557495743542584,
|
308 |
-
"loss": 2.2703,
|
309 |
-
"step": 250
|
310 |
-
},
|
311 |
-
{
|
312 |
-
"epoch": 5.8,
|
313 |
-
"learning_rate": 0.0017463214488042471,
|
314 |
-
"loss": 2.3703,
|
315 |
-
"step": 255
|
316 |
-
},
|
317 |
-
{
|
318 |
-
"epoch": 5.91,
|
319 |
-
"learning_rate": 0.001736741137876405,
|
320 |
-
"loss": 2.4648,
|
321 |
-
"step": 260
|
322 |
-
},
|
323 |
-
{
|
324 |
-
"epoch": 6.02,
|
325 |
-
"learning_rate": 0.0017270105951300739,
|
326 |
-
"loss": 2.2734,
|
327 |
-
"step": 265
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"epoch": 6.14,
|
331 |
-
"learning_rate": 0.0017171318047589637,
|
332 |
-
"loss": 1.9898,
|
333 |
-
"step": 270
|
334 |
-
},
|
335 |
-
{
|
336 |
-
"epoch": 6.25,
|
337 |
-
"learning_rate": 0.0017071067811865474,
|
338 |
-
"loss": 1.9816,
|
339 |
-
"step": 275
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"epoch": 6.36,
|
343 |
-
"learning_rate": 0.0016969375686552938,
|
344 |
-
"loss": 1.9648,
|
345 |
-
"step": 280
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"epoch": 6.48,
|
349 |
-
"learning_rate": 0.0016866262408098134,
|
350 |
-
"loss": 2.1672,
|
351 |
-
"step": 285
|
352 |
-
},
|
353 |
-
{
|
354 |
-
"epoch": 6.59,
|
355 |
-
"learning_rate": 0.0016761749002740195,
|
356 |
-
"loss": 2.0074,
|
357 |
-
"step": 290
|
358 |
-
},
|
359 |
-
{
|
360 |
-
"epoch": 6.7,
|
361 |
-
"learning_rate": 0.0016655856782223683,
|
362 |
-
"loss": 2.1598,
|
363 |
-
"step": 295
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"epoch": 6.82,
|
367 |
-
"learning_rate": 0.0016548607339452852,
|
368 |
-
"loss": 2.0996,
|
369 |
-
"step": 300
|
370 |
-
},
|
371 |
-
{
|
372 |
-
"epoch": 6.93,
|
373 |
-
"learning_rate": 0.0016440022544088554,
|
374 |
-
"loss": 2.1434,
|
375 |
-
"step": 305
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"epoch": 7.05,
|
379 |
-
"learning_rate": 0.0016330124538088703,
|
380 |
-
"loss": 2.0699,
|
381 |
-
"step": 310
|
382 |
-
},
|
383 |
-
{
|
384 |
-
"epoch": 7.16,
|
385 |
-
"learning_rate": 0.0016218935731193223,
|
386 |
-
"loss": 1.7312,
|
387 |
-
"step": 315
|
388 |
-
},
|
389 |
-
{
|
390 |
-
"epoch": 7.27,
|
391 |
-
"learning_rate": 0.0016106478796354383,
|
392 |
-
"loss": 1.7799,
|
393 |
-
"step": 320
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"epoch": 7.39,
|
397 |
-
"learning_rate": 0.0015992776665113468,
|
398 |
-
"loss": 1.7008,
|
399 |
-
"step": 325
|
400 |
-
},
|
401 |
-
{
|
402 |
-
"epoch": 7.5,
|
403 |
-
"learning_rate": 0.0015877852522924731,
|
404 |
-
"loss": 1.8969,
|
405 |
-
"step": 330
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"epoch": 7.61,
|
409 |
-
"learning_rate": 0.0015761729804427528,
|
410 |
-
"loss": 1.8156,
|
411 |
-
"step": 335
|
412 |
-
},
|
413 |
-
{
|
414 |
-
"epoch": 7.73,
|
415 |
-
"learning_rate": 0.0015644432188667695,
|
416 |
-
"loss": 1.9336,
|
417 |
-
"step": 340
|
418 |
-
},
|
419 |
-
{
|
420 |
-
"epoch": 7.84,
|
421 |
-
"learning_rate": 0.0015525983594269026,
|
422 |
-
"loss": 1.9918,
|
423 |
-
"step": 345
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"epoch": 7.95,
|
427 |
-
"learning_rate": 0.0015406408174555976,
|
428 |
-
"loss": 2.0055,
|
429 |
-
"step": 350
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"epoch": 8.07,
|
433 |
-
"learning_rate": 0.0015285730312628418,
|
434 |
-
"loss": 1.7168,
|
435 |
-
"step": 355
|
436 |
-
},
|
437 |
-
{
|
438 |
-
"epoch": 8.18,
|
439 |
-
"learning_rate": 0.001516397461638962,
|
440 |
-
"loss": 1.5531,
|
441 |
-
"step": 360
|
442 |
-
},
|
443 |
-
{
|
444 |
-
"epoch": 8.3,
|
445 |
-
"learning_rate": 0.001504116591352832,
|
446 |
-
"loss": 1.5922,
|
447 |
-
"step": 365
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"epoch": 8.41,
|
451 |
-
"learning_rate": 0.001491732924645604,
|
452 |
-
"loss": 1.618,
|
453 |
-
"step": 370
|
454 |
-
},
|
455 |
-
{
|
456 |
-
"epoch": 8.52,
|
457 |
-
"learning_rate": 0.0014792489867200569,
|
458 |
-
"loss": 1.6738,
|
459 |
-
"step": 375
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"epoch": 8.64,
|
463 |
-
"learning_rate": 0.0014666673232256737,
|
464 |
-
"loss": 1.7461,
|
465 |
-
"step": 380
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"epoch": 8.75,
|
469 |
-
"learning_rate": 0.0014539904997395467,
|
470 |
-
"loss": 1.6746,
|
471 |
-
"step": 385
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"epoch": 8.86,
|
475 |
-
"learning_rate": 0.0014412211012432212,
|
476 |
-
"loss": 1.7711,
|
477 |
-
"step": 390
|
478 |
-
},
|
479 |
-
{
|
480 |
-
"epoch": 8.98,
|
481 |
-
"learning_rate": 0.0014283617315955814,
|
482 |
-
"loss": 1.8387,
|
483 |
-
"step": 395
|
484 |
-
},
|
485 |
-
{
|
486 |
-
"epoch": 9.09,
|
487 |
-
"learning_rate": 0.0014154150130018866,
|
488 |
-
"loss": 1.475,
|
489 |
-
"step": 400
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"epoch": 9.2,
|
493 |
-
"learning_rate": 0.001402383585479068,
|
494 |
-
"loss": 1.4523,
|
495 |
-
"step": 405
|
496 |
-
},
|
497 |
-
{
|
498 |
-
"epoch": 9.32,
|
499 |
-
"learning_rate": 0.0013892701063173917,
|
500 |
-
"loss": 1.4812,
|
501 |
-
"step": 410
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"epoch": 9.43,
|
505 |
-
"learning_rate": 0.0013760772495385997,
|
506 |
-
"loss": 1.525,
|
507 |
-
"step": 415
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"epoch": 9.55,
|
511 |
-
"learning_rate": 0.001362807705350641,
|
512 |
-
"loss": 1.398,
|
513 |
-
"step": 420
|
514 |
-
},
|
515 |
-
{
|
516 |
-
"epoch": 9.66,
|
517 |
-
"learning_rate": 0.0013494641795990985,
|
518 |
-
"loss": 1.4477,
|
519 |
-
"step": 425
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"epoch": 9.77,
|
523 |
-
"learning_rate": 0.00133604939321543,
|
524 |
-
"loss": 1.5801,
|
525 |
-
"step": 430
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"epoch": 9.89,
|
529 |
-
"learning_rate": 0.0013225660816621341,
|
530 |
-
"loss": 1.6422,
|
531 |
-
"step": 435
|
532 |
-
},
|
533 |
-
{
|
534 |
-
"epoch": 10.0,
|
535 |
-
"learning_rate": 0.0013090169943749475,
|
536 |
-
"loss": 1.5535,
|
537 |
-
"step": 440
|
538 |
-
},
|
539 |
-
{
|
540 |
-
"epoch": 10.11,
|
541 |
-
"learning_rate": 0.0012954048942022001,
|
542 |
-
"loss": 1.2324,
|
543 |
-
"step": 445
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"epoch": 10.23,
|
547 |
-
"learning_rate": 0.0012817325568414298,
|
548 |
-
"loss": 1.2613,
|
549 |
-
"step": 450
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"epoch": 10.34,
|
553 |
-
"learning_rate": 0.001268002770273379,
|
554 |
-
"loss": 1.3293,
|
555 |
-
"step": 455
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"epoch": 10.45,
|
559 |
-
"learning_rate": 0.0012542183341934872,
|
560 |
-
"loss": 1.2852,
|
561 |
-
"step": 460
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"epoch": 10.57,
|
565 |
-
"learning_rate": 0.0012403820594409924,
|
566 |
-
"loss": 1.3295,
|
567 |
-
"step": 465
|
568 |
-
},
|
569 |
-
{
|
570 |
-
"epoch": 10.68,
|
571 |
-
"learning_rate": 0.0012264967674257645,
|
572 |
-
"loss": 1.3287,
|
573 |
-
"step": 470
|
574 |
-
},
|
575 |
-
{
|
576 |
-
"epoch": 10.8,
|
577 |
-
"learning_rate": 0.0012125652895529767,
|
578 |
-
"loss": 1.3566,
|
579 |
-
"step": 475
|
580 |
-
},
|
581 |
-
{
|
582 |
-
"epoch": 10.91,
|
583 |
-
"learning_rate": 0.0011985904666457455,
|
584 |
-
"loss": 1.4414,
|
585 |
-
"step": 480
|
586 |
-
},
|
587 |
-
{
|
588 |
-
"epoch": 11.02,
|
589 |
-
"learning_rate": 0.0011845751483658454,
|
590 |
-
"loss": 1.3695,
|
591 |
-
"step": 485
|
592 |
-
},
|
593 |
-
{
|
594 |
-
"epoch": 11.14,
|
595 |
-
"learning_rate": 0.0011705221926326238,
|
596 |
-
"loss": 1.1363,
|
597 |
-
"step": 490
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"epoch": 11.25,
|
601 |
-
"learning_rate": 0.001156434465040231,
|
602 |
-
"loss": 1.1354,
|
603 |
-
"step": 495
|
604 |
-
},
|
605 |
-
{
|
606 |
-
"epoch": 11.36,
|
607 |
-
"learning_rate": 0.0011423148382732854,
|
608 |
-
"loss": 1.0725,
|
609 |
-
"step": 500
|
610 |
-
},
|
611 |
-
{
|
612 |
-
"epoch": 11.48,
|
613 |
-
"learning_rate": 0.001128166191521093,
|
614 |
-
"loss": 1.1754,
|
615 |
-
"step": 505
|
616 |
-
},
|
617 |
-
{
|
618 |
-
"epoch": 11.59,
|
619 |
-
"learning_rate": 0.0011139914098905405,
|
620 |
-
"loss": 1.1848,
|
621 |
-
"step": 510
|
622 |
-
},
|
623 |
-
{
|
624 |
-
"epoch": 11.7,
|
625 |
-
"learning_rate": 0.0010997933838177826,
|
626 |
-
"loss": 1.2354,
|
627 |
-
"step": 515
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"epoch": 11.82,
|
631 |
-
"learning_rate": 0.0010855750084788399,
|
632 |
-
"loss": 1.1984,
|
633 |
-
"step": 520
|
634 |
-
},
|
635 |
-
{
|
636 |
-
"epoch": 11.93,
|
637 |
-
"learning_rate": 0.0010713391831992322,
|
638 |
-
"loss": 1.2666,
|
639 |
-
"step": 525
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"epoch": 12.05,
|
643 |
-
"learning_rate": 0.001057088810862768,
|
644 |
-
"loss": 1.1408,
|
645 |
-
"step": 530
|
646 |
-
},
|
647 |
-
{
|
648 |
-
"epoch": 12.16,
|
649 |
-
"learning_rate": 0.0010428267973196027,
|
650 |
-
"loss": 0.9385,
|
651 |
-
"step": 535
|
652 |
-
},
|
653 |
-
{
|
654 |
-
"epoch": 12.27,
|
655 |
-
"learning_rate": 0.0010285560507936962,
|
656 |
-
"loss": 1.0158,
|
657 |
-
"step": 540
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"epoch": 12.39,
|
661 |
-
"learning_rate": 0.0010142794812897874,
|
662 |
-
"loss": 0.9936,
|
663 |
-
"step": 545
|
664 |
-
},
|
665 |
-
{
|
666 |
-
"epoch": 12.5,
|
667 |
-
"learning_rate": 0.001,
|
668 |
-
"loss": 0.9891,
|
669 |
-
"step": 550
|
670 |
-
},
|
671 |
-
{
|
672 |
-
"epoch": 12.61,
|
673 |
-
"learning_rate": 0.000985720518710213,
|
674 |
-
"loss": 1.0684,
|
675 |
-
"step": 555
|
676 |
-
},
|
677 |
-
{
|
678 |
-
"epoch": 12.73,
|
679 |
-
"learning_rate": 0.0009714439492063038,
|
680 |
-
"loss": 1.076,
|
681 |
-
"step": 560
|
682 |
-
},
|
683 |
-
{
|
684 |
-
"epoch": 12.84,
|
685 |
-
"learning_rate": 0.0009571732026803976,
|
686 |
-
"loss": 1.0609,
|
687 |
-
"step": 565
|
688 |
-
},
|
689 |
-
{
|
690 |
-
"epoch": 12.95,
|
691 |
-
"learning_rate": 0.000942911189137232,
|
692 |
-
"loss": 1.1297,
|
693 |
-
"step": 570
|
694 |
-
},
|
695 |
-
{
|
696 |
-
"epoch": 13.07,
|
697 |
-
"learning_rate": 0.0009286608168007677,
|
698 |
-
"loss": 0.9342,
|
699 |
-
"step": 575
|
700 |
-
},
|
701 |
-
{
|
702 |
-
"epoch": 13.18,
|
703 |
-
"learning_rate": 0.0009144249915211606,
|
704 |
-
"loss": 0.8511,
|
705 |
-
"step": 580
|
706 |
-
},
|
707 |
-
{
|
708 |
-
"epoch": 13.3,
|
709 |
-
"learning_rate": 0.0009002066161822172,
|
710 |
-
"loss": 0.8336,
|
711 |
-
"step": 585
|
712 |
-
},
|
713 |
-
{
|
714 |
-
"epoch": 13.41,
|
715 |
-
"learning_rate": 0.0008860085901094594,
|
716 |
-
"loss": 0.8652,
|
717 |
-
"step": 590
|
718 |
-
},
|
719 |
-
{
|
720 |
-
"epoch": 13.52,
|
721 |
-
"learning_rate": 0.0008718338084789072,
|
722 |
-
"loss": 0.9744,
|
723 |
-
"step": 595
|
724 |
-
},
|
725 |
-
{
|
726 |
-
"epoch": 13.64,
|
727 |
-
"learning_rate": 0.000857685161726715,
|
728 |
-
"loss": 0.9006,
|
729 |
-
"step": 600
|
730 |
-
},
|
731 |
-
{
|
732 |
-
"epoch": 13.75,
|
733 |
-
"learning_rate": 0.000843565534959769,
|
734 |
-
"loss": 0.9619,
|
735 |
-
"step": 605
|
736 |
-
},
|
737 |
-
{
|
738 |
-
"epoch": 13.86,
|
739 |
-
"learning_rate": 0.0008294778073673762,
|
740 |
-
"loss": 0.9123,
|
741 |
-
"step": 610
|
742 |
-
},
|
743 |
-
{
|
744 |
-
"epoch": 13.98,
|
745 |
-
"learning_rate": 0.0008154248516341547,
|
746 |
-
"loss": 0.9959,
|
747 |
-
"step": 615
|
748 |
-
},
|
749 |
-
{
|
750 |
-
"epoch": 14.09,
|
751 |
-
"learning_rate": 0.0008014095333542549,
|
752 |
-
"loss": 0.7503,
|
753 |
-
"step": 620
|
754 |
-
},
|
755 |
-
{
|
756 |
-
"epoch": 14.2,
|
757 |
-
"learning_rate": 0.0007874347104470233,
|
758 |
-
"loss": 0.7357,
|
759 |
-
"step": 625
|
760 |
-
},
|
761 |
-
{
|
762 |
-
"epoch": 14.32,
|
763 |
-
"learning_rate": 0.0007735032325742355,
|
764 |
-
"loss": 0.7477,
|
765 |
-
"step": 630
|
766 |
-
},
|
767 |
-
{
|
768 |
-
"epoch": 14.43,
|
769 |
-
"learning_rate": 0.0007596179405590076,
|
770 |
-
"loss": 0.8088,
|
771 |
-
"step": 635
|
772 |
-
},
|
773 |
-
{
|
774 |
-
"epoch": 14.55,
|
775 |
-
"learning_rate": 0.0007457816658065133,
|
776 |
-
"loss": 0.7652,
|
777 |
-
"step": 640
|
778 |
-
},
|
779 |
-
{
|
780 |
-
"epoch": 14.66,
|
781 |
-
"learning_rate": 0.0007319972297266214,
|
782 |
-
"loss": 0.7847,
|
783 |
-
"step": 645
|
784 |
-
},
|
785 |
-
{
|
786 |
-
"epoch": 14.77,
|
787 |
-
"learning_rate": 0.0007182674431585703,
|
788 |
-
"loss": 0.7984,
|
789 |
-
"step": 650
|
790 |
-
},
|
791 |
-
{
|
792 |
-
"epoch": 14.89,
|
793 |
-
"learning_rate": 0.0007045951057978,
|
794 |
-
"loss": 0.8732,
|
795 |
-
"step": 655
|
796 |
-
},
|
797 |
-
{
|
798 |
-
"epoch": 15.0,
|
799 |
-
"learning_rate": 0.0006909830056250527,
|
800 |
-
"loss": 0.8258,
|
801 |
-
"step": 660
|
802 |
-
},
|
803 |
-
{
|
804 |
-
"epoch": 15.11,
|
805 |
-
"learning_rate": 0.0006774339183378663,
|
806 |
-
"loss": 0.6311,
|
807 |
-
"step": 665
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"epoch": 15.23,
|
811 |
-
"learning_rate": 0.0006639506067845697,
|
812 |
-
"loss": 0.6543,
|
813 |
-
"step": 670
|
814 |
-
},
|
815 |
-
{
|
816 |
-
"epoch": 15.34,
|
817 |
-
"learning_rate": 0.0006505358204009018,
|
818 |
-
"loss": 0.6421,
|
819 |
-
"step": 675
|
820 |
-
},
|
821 |
-
{
|
822 |
-
"epoch": 15.45,
|
823 |
-
"learning_rate": 0.0006371922946493591,
|
824 |
-
"loss": 0.6937,
|
825 |
-
"step": 680
|
826 |
-
},
|
827 |
-
{
|
828 |
-
"epoch": 15.57,
|
829 |
-
"learning_rate": 0.0006239227504614003,
|
830 |
-
"loss": 0.6887,
|
831 |
-
"step": 685
|
832 |
-
},
|
833 |
-
{
|
834 |
-
"epoch": 15.68,
|
835 |
-
"learning_rate": 0.0006107298936826086,
|
836 |
-
"loss": 0.7097,
|
837 |
-
"step": 690
|
838 |
-
},
|
839 |
-
{
|
840 |
-
"epoch": 15.8,
|
841 |
-
"learning_rate": 0.0005976164145209322,
|
842 |
-
"loss": 0.6778,
|
843 |
-
"step": 695
|
844 |
-
},
|
845 |
-
{
|
846 |
-
"epoch": 15.91,
|
847 |
-
"learning_rate": 0.0005845849869981136,
|
848 |
-
"loss": 0.7124,
|
849 |
-
"step": 700
|
850 |
-
},
|
851 |
-
{
|
852 |
-
"epoch": 16.02,
|
853 |
-
"learning_rate": 0.000571638268404419,
|
854 |
-
"loss": 0.7053,
|
855 |
-
"step": 705
|
856 |
-
},
|
857 |
-
{
|
858 |
-
"epoch": 16.14,
|
859 |
-
"learning_rate": 0.0005587788987567784,
|
860 |
-
"loss": 0.5863,
|
861 |
-
"step": 710
|
862 |
-
},
|
863 |
-
{
|
864 |
-
"epoch": 16.25,
|
865 |
-
"learning_rate": 0.0005460095002604533,
|
866 |
-
"loss": 0.5588,
|
867 |
-
"step": 715
|
868 |
-
},
|
869 |
-
{
|
870 |
-
"epoch": 16.36,
|
871 |
-
"learning_rate": 0.0005333326767743263,
|
872 |
-
"loss": 0.5363,
|
873 |
-
"step": 720
|
874 |
-
},
|
875 |
-
{
|
876 |
-
"epoch": 16.48,
|
877 |
-
"learning_rate": 0.0005207510132799435,
|
878 |
-
"loss": 0.6137,
|
879 |
-
"step": 725
|
880 |
-
},
|
881 |
-
{
|
882 |
-
"epoch": 16.59,
|
883 |
-
"learning_rate": 0.0005082670753543961,
|
884 |
-
"loss": 0.5606,
|
885 |
-
"step": 730
|
886 |
-
},
|
887 |
-
{
|
888 |
-
"epoch": 16.7,
|
889 |
-
"learning_rate": 0.0004958834086471683,
|
890 |
-
"loss": 0.629,
|
891 |
-
"step": 735
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"epoch": 16.82,
|
895 |
-
"learning_rate": 0.00048360253836103817,
|
896 |
-
"loss": 0.5754,
|
897 |
-
"step": 740
|
898 |
-
},
|
899 |
-
{
|
900 |
-
"epoch": 16.93,
|
901 |
-
"learning_rate": 0.0004714269687371581,
|
902 |
-
"loss": 0.6239,
|
903 |
-
"step": 745
|
904 |
-
},
|
905 |
-
{
|
906 |
-
"epoch": 17.05,
|
907 |
-
"learning_rate": 0.0004593591825444028,
|
908 |
-
"loss": 0.5807,
|
909 |
-
"step": 750
|
910 |
-
},
|
911 |
-
{
|
912 |
-
"epoch": 17.16,
|
913 |
-
"learning_rate": 0.0004474016405730973,
|
914 |
-
"loss": 0.465,
|
915 |
-
"step": 755
|
916 |
-
},
|
917 |
-
{
|
918 |
-
"epoch": 17.27,
|
919 |
-
"learning_rate": 0.00043555678113323104,
|
920 |
-
"loss": 0.4871,
|
921 |
-
"step": 760
|
922 |
-
},
|
923 |
-
{
|
924 |
-
"epoch": 17.39,
|
925 |
-
"learning_rate": 0.00042382701955724725,
|
926 |
-
"loss": 0.4623,
|
927 |
-
"step": 765
|
928 |
-
},
|
929 |
-
{
|
930 |
-
"epoch": 17.5,
|
931 |
-
"learning_rate": 0.00041221474770752696,
|
932 |
-
"loss": 0.5059,
|
933 |
-
"step": 770
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"epoch": 17.61,
|
937 |
-
"learning_rate": 0.00040072233348865304,
|
938 |
-
"loss": 0.5021,
|
939 |
-
"step": 775
|
940 |
-
},
|
941 |
-
{
|
942 |
-
"epoch": 17.73,
|
943 |
-
"learning_rate": 0.0003893521203645618,
|
944 |
-
"loss": 0.5138,
|
945 |
-
"step": 780
|
946 |
-
},
|
947 |
-
{
|
948 |
-
"epoch": 17.84,
|
949 |
-
"learning_rate": 0.00037810642688067796,
|
950 |
-
"loss": 0.5212,
|
951 |
-
"step": 785
|
952 |
-
},
|
953 |
-
{
|
954 |
-
"epoch": 17.95,
|
955 |
-
"learning_rate": 0.00036698754619112975,
|
956 |
-
"loss": 0.5611,
|
957 |
-
"step": 790
|
958 |
-
},
|
959 |
-
{
|
960 |
-
"epoch": 18.07,
|
961 |
-
"learning_rate": 0.00035599774559114475,
|
962 |
-
"loss": 0.4956,
|
963 |
-
"step": 795
|
964 |
-
},
|
965 |
-
{
|
966 |
-
"epoch": 18.18,
|
967 |
-
"learning_rate": 0.000345139266054715,
|
968 |
-
"loss": 0.4243,
|
969 |
-
"step": 800
|
970 |
-
},
|
971 |
-
{
|
972 |
-
"epoch": 18.3,
|
973 |
-
"learning_rate": 0.0003344143217776319,
|
974 |
-
"loss": 0.4391,
|
975 |
-
"step": 805
|
976 |
-
},
|
977 |
-
{
|
978 |
-
"epoch": 18.41,
|
979 |
-
"learning_rate": 0.00032382509972598086,
|
980 |
-
"loss": 0.4627,
|
981 |
-
"step": 810
|
982 |
-
},
|
983 |
-
{
|
984 |
-
"epoch": 18.52,
|
985 |
-
"learning_rate": 0.0003133737591901864,
|
986 |
-
"loss": 0.4208,
|
987 |
-
"step": 815
|
988 |
-
},
|
989 |
-
{
|
990 |
-
"epoch": 18.64,
|
991 |
-
"learning_rate": 0.0003030624313447067,
|
992 |
-
"loss": 0.45,
|
993 |
-
"step": 820
|
994 |
-
},
|
995 |
-
{
|
996 |
-
"epoch": 18.75,
|
997 |
-
"learning_rate": 0.00029289321881345256,
|
998 |
-
"loss": 0.44,
|
999 |
-
"step": 825
|
1000 |
-
},
|
1001 |
-
{
|
1002 |
-
"epoch": 18.86,
|
1003 |
-
"learning_rate": 0.0002828681952410366,
|
1004 |
-
"loss": 0.4451,
|
1005 |
-
"step": 830
|
1006 |
-
},
|
1007 |
-
{
|
1008 |
-
"epoch": 18.98,
|
1009 |
-
"learning_rate": 0.0002729894048699265,
|
1010 |
-
"loss": 0.4494,
|
1011 |
-
"step": 835
|
1012 |
-
},
|
1013 |
-
{
|
1014 |
-
"epoch": 19.09,
|
1015 |
-
"learning_rate": 0.00026325886212359495,
|
1016 |
-
"loss": 0.3839,
|
1017 |
-
"step": 840
|
1018 |
-
},
|
1019 |
-
{
|
1020 |
-
"epoch": 19.2,
|
1021 |
-
"learning_rate": 0.0002536785511957531,
|
1022 |
-
"loss": 0.3728,
|
1023 |
-
"step": 845
|
1024 |
-
},
|
1025 |
-
{
|
1026 |
-
"epoch": 19.32,
|
1027 |
-
"learning_rate": 0.00024425042564574185,
|
1028 |
-
"loss": 0.4126,
|
1029 |
-
"step": 850
|
1030 |
-
},
|
1031 |
-
{
|
1032 |
-
"epoch": 19.43,
|
1033 |
-
"learning_rate": 0.00023497640800017682,
|
1034 |
-
"loss": 0.4183,
|
1035 |
-
"step": 855
|
1036 |
-
},
|
1037 |
-
{
|
1038 |
-
"epoch": 19.55,
|
1039 |
-
"learning_rate": 0.0002258583893609175,
|
1040 |
-
"loss": 0.3778,
|
1041 |
-
"step": 860
|
1042 |
-
},
|
1043 |
-
{
|
1044 |
-
"epoch": 19.66,
|
1045 |
-
"learning_rate": 0.00021689822901944456,
|
1046 |
-
"loss": 0.3758,
|
1047 |
-
"step": 865
|
1048 |
-
},
|
1049 |
-
{
|
1050 |
-
"epoch": 19.77,
|
1051 |
-
"learning_rate": 0.000208097754077725,
|
1052 |
-
"loss": 0.4034,
|
1053 |
-
"step": 870
|
1054 |
-
},
|
1055 |
-
{
|
1056 |
-
"epoch": 19.89,
|
1057 |
-
"learning_rate": 0.0001994587590756397,
|
1058 |
-
"loss": 0.4085,
|
1059 |
-
"step": 875
|
1060 |
-
},
|
1061 |
-
{
|
1062 |
-
"epoch": 20.0,
|
1063 |
-
"learning_rate": 0.00019098300562505265,
|
1064 |
-
"loss": 0.3673,
|
1065 |
-
"step": 880
|
1066 |
-
},
|
1067 |
-
{
|
1068 |
-
"epoch": 20.11,
|
1069 |
-
"learning_rate": 0.0001826722220505931,
|
1070 |
-
"loss": 0.363,
|
1071 |
-
"step": 885
|
1072 |
-
},
|
1073 |
-
{
|
1074 |
-
"epoch": 20.23,
|
1075 |
-
"learning_rate": 0.000174528103037226,
|
1076 |
-
"loss": 0.3707,
|
1077 |
-
"step": 890
|
1078 |
-
},
|
1079 |
-
{
|
1080 |
-
"epoch": 20.34,
|
1081 |
-
"learning_rate": 0.00016655230928468257,
|
1082 |
-
"loss": 0.369,
|
1083 |
-
"step": 895
|
1084 |
-
},
|
1085 |
-
{
|
1086 |
-
"epoch": 20.45,
|
1087 |
-
"learning_rate": 0.00015874646716881869,
|
1088 |
-
"loss": 0.3528,
|
1089 |
-
"step": 900
|
1090 |
-
},
|
1091 |
-
{
|
1092 |
-
"epoch": 20.57,
|
1093 |
-
"learning_rate": 0.00015111216840997744,
|
1094 |
-
"loss": 0.3581,
|
1095 |
-
"step": 905
|
1096 |
-
},
|
1097 |
-
{
|
1098 |
-
"epoch": 20.68,
|
1099 |
-
"learning_rate": 0.00014365096974841107,
|
1100 |
-
"loss": 0.3466,
|
1101 |
-
"step": 910
|
1102 |
-
},
|
1103 |
-
{
|
1104 |
-
"epoch": 20.8,
|
1105 |
-
"learning_rate": 0.00013636439262684297,
|
1106 |
-
"loss": 0.3274,
|
1107 |
-
"step": 915
|
1108 |
-
},
|
1109 |
-
{
|
1110 |
-
"epoch": 20.91,
|
1111 |
-
"learning_rate": 0.00012925392288022297,
|
1112 |
-
"loss": 0.3401,
|
1113 |
-
"step": 920
|
1114 |
-
},
|
1115 |
-
{
|
1116 |
-
"epoch": 21.02,
|
1117 |
-
"learning_rate": 0.00012232101043274435,
|
1118 |
-
"loss": 0.3435,
|
1119 |
-
"step": 925
|
1120 |
-
},
|
1121 |
-
{
|
1122 |
-
"epoch": 21.14,
|
1123 |
-
"learning_rate": 0.00011556706900218572,
|
1124 |
-
"loss": 0.2972,
|
1125 |
-
"step": 930
|
1126 |
-
},
|
1127 |
-
{
|
1128 |
-
"epoch": 21.25,
|
1129 |
-
"learning_rate": 0.00010899347581163222,
|
1130 |
-
"loss": 0.3153,
|
1131 |
-
"step": 935
|
1132 |
-
},
|
1133 |
-
{
|
1134 |
-
"epoch": 21.36,
|
1135 |
-
"learning_rate": 0.00010260157130864178,
|
1136 |
-
"loss": 0.3315,
|
1137 |
-
"step": 940
|
1138 |
-
},
|
1139 |
-
{
|
1140 |
-
"epoch": 21.48,
|
1141 |
-
"learning_rate": 9.639265889190829e-05,
|
1142 |
-
"loss": 0.3264,
|
1143 |
-
"step": 945
|
1144 |
-
},
|
1145 |
-
{
|
1146 |
-
"epoch": 21.59,
|
1147 |
-
"learning_rate": 9.036800464548156e-05,
|
1148 |
-
"loss": 0.3427,
|
1149 |
-
"step": 950
|
1150 |
-
},
|
1151 |
-
{
|
1152 |
-
"epoch": 21.7,
|
1153 |
-
"learning_rate": 8.4528837080594e-05,
|
1154 |
-
"loss": 0.3415,
|
1155 |
-
"step": 955
|
1156 |
-
},
|
1157 |
-
{
|
1158 |
-
"epoch": 21.82,
|
1159 |
-
"learning_rate": 7.887634688515e-05,
|
1160 |
-
"loss": 0.323,
|
1161 |
-
"step": 960
|
1162 |
-
},
|
1163 |
-
{
|
1164 |
-
"epoch": 21.93,
|
1165 |
-
"learning_rate": 7.341168668092857e-05,
|
1166 |
-
"loss": 0.2961,
|
1167 |
-
"step": 965
|
1168 |
-
},
|
1169 |
-
{
|
1170 |
-
"epoch": 22.05,
|
1171 |
-
"learning_rate": 6.813597078854772e-05,
|
1172 |
-
"loss": 0.3276,
|
1173 |
-
"step": 970
|
1174 |
-
},
|
1175 |
-
{
|
1176 |
-
"epoch": 22.16,
|
1177 |
-
"learning_rate": 6.305027500023842e-05,
|
1178 |
-
"loss": 0.3045,
|
1179 |
-
"step": 975
|
1180 |
-
},
|
1181 |
-
{
|
1182 |
-
"epoch": 22.27,
|
1183 |
-
"learning_rate": 5.8155636360475384e-05,
|
1184 |
-
"loss": 0.3167,
|
1185 |
-
"step": 980
|
1186 |
-
},
|
1187 |
-
{
|
1188 |
-
"epoch": 22.39,
|
1189 |
-
"learning_rate": 5.345305295450997e-05,
|
1190 |
-
"loss": 0.319,
|
1191 |
-
"step": 985
|
1192 |
-
},
|
1193 |
-
{
|
1194 |
-
"epoch": 22.5,
|
1195 |
-
"learning_rate": 4.894348370484647e-05,
|
1196 |
-
"loss": 0.2852,
|
1197 |
-
"step": 990
|
1198 |
-
},
|
1199 |
-
{
|
1200 |
-
"epoch": 22.61,
|
1201 |
-
"learning_rate": 4.4627848175703315e-05,
|
1202 |
-
"loss": 0.3034,
|
1203 |
-
"step": 995
|
1204 |
-
},
|
1205 |
-
{
|
1206 |
-
"epoch": 22.73,
|
1207 |
-
"learning_rate": 4.050702638550274e-05,
|
1208 |
-
"loss": 0.2845,
|
1209 |
-
"step": 1000
|
1210 |
-
}
|
1211 |
-
],
|
1212 |
-
"logging_steps": 5,
|
1213 |
-
"max_steps": 1100,
|
1214 |
-
"num_input_tokens_seen": 0,
|
1215 |
-
"num_train_epochs": 25,
|
1216 |
-
"save_steps": 100,
|
1217 |
-
"total_flos": 5.092929071525069e+17,
|
1218 |
-
"train_batch_size": 4,
|
1219 |
-
"trial_name": null,
|
1220 |
-
"trial_params": null
|
1221 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1000/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fef6a3ae006ec4c51dbcf0a3e569288ca5ab1bbc97f41768934c32153b03277c
|
3 |
-
size 4920
|
|
|
|
|
|
|
|
checkpoint-1100/README.md
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: peft
|
3 |
-
base_model: /root/chatglm3-6b
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
202 |
-
### Framework versions
|
203 |
-
|
204 |
-
- PEFT 0.7.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/adapter_config.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/root/chatglm3-6b",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 64.0,
|
13 |
-
"lora_dropout": 0.1,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 32,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"query_key_value"
|
23 |
-
],
|
24 |
-
"task_type": "CAUSAL_LM"
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2bc2583490c7dc47bededcc0eaaa25d9aafe96d7680d7ecf5ec077c85de59604
|
3 |
-
size 31204248
|
|
|
|
|
|
|
|
checkpoint-1100/optimizer.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:71abfda018effb690a77e01b7df48e60cb730b12599e5ad6fdc26845b844760a
|
3 |
-
size 62437882
|
|
|
|
|
|
|
|
checkpoint-1100/rng_state.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7866b8fc933c6248bae764638e49b94ebe1f35463171c6986de52c6a81632428
|
3 |
-
size 14244
|
|
|
|
|
|
|
|
checkpoint-1100/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:834bea796770b94431ea03d70df0b96b826ab2cbdccf7ff1204aca5c40cb9ee7
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
checkpoint-1100/special_tokens_map.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
{
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"content": "<|observation|>",
|
12 |
-
"lstrip": false,
|
13 |
-
"normalized": false,
|
14 |
-
"rstrip": false,
|
15 |
-
"single_word": false
|
16 |
-
}
|
17 |
-
]
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/tokenization_chatglm.py
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from typing import List, Optional, Union, Dict
|
5 |
-
from sentencepiece import SentencePieceProcessor
|
6 |
-
from transformers import PreTrainedTokenizer
|
7 |
-
from transformers.utils import logging, PaddingStrategy
|
8 |
-
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
-
|
10 |
-
|
11 |
-
class SPTokenizer:
|
12 |
-
def __init__(self, model_path: str):
|
13 |
-
# reload tokenizer
|
14 |
-
assert os.path.isfile(model_path), model_path
|
15 |
-
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
-
|
17 |
-
# BOS / EOS token IDs
|
18 |
-
self.n_words: int = self.sp_model.vocab_size()
|
19 |
-
self.bos_id: int = self.sp_model.bos_id()
|
20 |
-
self.eos_id: int = self.sp_model.eos_id()
|
21 |
-
self.pad_id: int = self.sp_model.unk_id()
|
22 |
-
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
-
|
24 |
-
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
-
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
-
self.special_tokens = {}
|
27 |
-
self.index_special_tokens = {}
|
28 |
-
for token in special_tokens:
|
29 |
-
self.special_tokens[token] = self.n_words
|
30 |
-
self.index_special_tokens[self.n_words] = token
|
31 |
-
self.n_words += 1
|
32 |
-
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
-
|
34 |
-
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
-
if encode_special_tokens:
|
36 |
-
last_index = 0
|
37 |
-
t = []
|
38 |
-
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
-
if last_index < match.start():
|
40 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
-
t.append(s[match.start():match.end()])
|
42 |
-
last_index = match.end()
|
43 |
-
if last_index < len(s):
|
44 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
-
return t
|
46 |
-
else:
|
47 |
-
return self.sp_model.EncodeAsPieces(s)
|
48 |
-
|
49 |
-
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
-
assert type(s) is str
|
51 |
-
t = self.sp_model.encode(s)
|
52 |
-
if bos:
|
53 |
-
t = [self.bos_id] + t
|
54 |
-
if eos:
|
55 |
-
t = t + [self.eos_id]
|
56 |
-
return t
|
57 |
-
|
58 |
-
def decode(self, t: List[int]) -> str:
|
59 |
-
text, buffer = "", []
|
60 |
-
for token in t:
|
61 |
-
if token in self.index_special_tokens:
|
62 |
-
if buffer:
|
63 |
-
text += self.sp_model.decode(buffer)
|
64 |
-
buffer = []
|
65 |
-
text += self.index_special_tokens[token]
|
66 |
-
else:
|
67 |
-
buffer.append(token)
|
68 |
-
if buffer:
|
69 |
-
text += self.sp_model.decode(buffer)
|
70 |
-
return text
|
71 |
-
|
72 |
-
def decode_tokens(self, tokens: List[str]) -> str:
|
73 |
-
text = self.sp_model.DecodePieces(tokens)
|
74 |
-
return text
|
75 |
-
|
76 |
-
def convert_token_to_id(self, token):
|
77 |
-
""" Converts a token (str) in an id using the vocab. """
|
78 |
-
if token in self.special_tokens:
|
79 |
-
return self.special_tokens[token]
|
80 |
-
return self.sp_model.PieceToId(token)
|
81 |
-
|
82 |
-
def convert_id_to_token(self, index):
|
83 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
84 |
-
if index in self.index_special_tokens:
|
85 |
-
return self.index_special_tokens[index]
|
86 |
-
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
87 |
-
return ""
|
88 |
-
return self.sp_model.IdToPiece(index)
|
89 |
-
|
90 |
-
|
91 |
-
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
-
|
94 |
-
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
-
|
96 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
-
**kwargs):
|
98 |
-
self.name = "GLMTokenizer"
|
99 |
-
|
100 |
-
self.vocab_file = vocab_file
|
101 |
-
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
-
self.special_tokens = {
|
103 |
-
"<bos>": self.tokenizer.bos_id,
|
104 |
-
"<eos>": self.tokenizer.eos_id,
|
105 |
-
"<pad>": self.tokenizer.pad_id
|
106 |
-
}
|
107 |
-
self.encode_special_tokens = encode_special_tokens
|
108 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
-
encode_special_tokens=encode_special_tokens,
|
110 |
-
**kwargs)
|
111 |
-
|
112 |
-
def get_command(self, token):
|
113 |
-
if token in self.special_tokens:
|
114 |
-
return self.special_tokens[token]
|
115 |
-
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
116 |
-
return self.tokenizer.special_tokens[token]
|
117 |
-
|
118 |
-
@property
|
119 |
-
def unk_token(self) -> str:
|
120 |
-
return "<unk>"
|
121 |
-
|
122 |
-
@property
|
123 |
-
def pad_token(self) -> str:
|
124 |
-
return "<unk>"
|
125 |
-
|
126 |
-
@property
|
127 |
-
def pad_token_id(self):
|
128 |
-
return self.get_command("<pad>")
|
129 |
-
|
130 |
-
@property
|
131 |
-
def eos_token(self) -> str:
|
132 |
-
return "</s>"
|
133 |
-
|
134 |
-
@property
|
135 |
-
def eos_token_id(self):
|
136 |
-
return self.get_command("<eos>")
|
137 |
-
|
138 |
-
@property
|
139 |
-
def vocab_size(self):
|
140 |
-
return self.tokenizer.n_words
|
141 |
-
|
142 |
-
def get_vocab(self):
|
143 |
-
""" Returns vocab as a dict """
|
144 |
-
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
145 |
-
vocab.update(self.added_tokens_encoder)
|
146 |
-
return vocab
|
147 |
-
|
148 |
-
def _tokenize(self, text, **kwargs):
|
149 |
-
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
-
|
151 |
-
def _convert_token_to_id(self, token):
|
152 |
-
""" Converts a token (str) in an id using the vocab. """
|
153 |
-
return self.tokenizer.convert_token_to_id(token)
|
154 |
-
|
155 |
-
def _convert_id_to_token(self, index):
|
156 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
157 |
-
return self.tokenizer.convert_id_to_token(index)
|
158 |
-
|
159 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
160 |
-
return self.tokenizer.decode_tokens(tokens)
|
161 |
-
|
162 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
163 |
-
"""
|
164 |
-
Save the vocabulary and special tokens file to a directory.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
save_directory (`str`):
|
168 |
-
The directory in which to save the vocabulary.
|
169 |
-
filename_prefix (`str`, *optional*):
|
170 |
-
An optional prefix to add to the named of the saved files.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
if os.path.isdir(save_directory):
|
176 |
-
vocab_file = os.path.join(
|
177 |
-
save_directory, self.vocab_files_names["vocab_file"]
|
178 |
-
)
|
179 |
-
else:
|
180 |
-
vocab_file = save_directory
|
181 |
-
|
182 |
-
with open(self.vocab_file, 'rb') as fin:
|
183 |
-
proto_str = fin.read()
|
184 |
-
|
185 |
-
with open(vocab_file, "wb") as writer:
|
186 |
-
writer.write(proto_str)
|
187 |
-
|
188 |
-
return (vocab_file,)
|
189 |
-
|
190 |
-
def get_prefix_tokens(self):
|
191 |
-
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
192 |
-
return prefix_tokens
|
193 |
-
|
194 |
-
def build_single_message(self, role, metadata, message):
|
195 |
-
assert role in ["system", "user", "assistant", "observation"], role
|
196 |
-
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
197 |
-
message_tokens = self.tokenizer.encode(message)
|
198 |
-
tokens = role_tokens + message_tokens
|
199 |
-
return tokens
|
200 |
-
|
201 |
-
def build_chat_input(self, query, history=None, role="user"):
|
202 |
-
if history is None:
|
203 |
-
history = []
|
204 |
-
input_ids = []
|
205 |
-
for item in history:
|
206 |
-
content = item["content"]
|
207 |
-
if item["role"] == "system" and "tools" in item:
|
208 |
-
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
209 |
-
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
210 |
-
input_ids.extend(self.build_single_message(role, "", query))
|
211 |
-
input_ids.extend([self.get_command("<|assistant|>")])
|
212 |
-
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
-
|
214 |
-
def build_inputs_with_special_tokens(
|
215 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
-
) -> List[int]:
|
217 |
-
"""
|
218 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
-
adding special tokens. A BERT sequence has the following format:
|
220 |
-
|
221 |
-
- single sequence: `[CLS] X [SEP]`
|
222 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
223 |
-
|
224 |
-
Args:
|
225 |
-
token_ids_0 (`List[int]`):
|
226 |
-
List of IDs to which the special tokens will be added.
|
227 |
-
token_ids_1 (`List[int]`, *optional*):
|
228 |
-
Optional second list of IDs for sequence pairs.
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
-
"""
|
233 |
-
prefix_tokens = self.get_prefix_tokens()
|
234 |
-
token_ids_0 = prefix_tokens + token_ids_0
|
235 |
-
if token_ids_1 is not None:
|
236 |
-
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
237 |
-
return token_ids_0
|
238 |
-
|
239 |
-
def _pad(
|
240 |
-
self,
|
241 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
242 |
-
max_length: Optional[int] = None,
|
243 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
244 |
-
pad_to_multiple_of: Optional[int] = None,
|
245 |
-
return_attention_mask: Optional[bool] = None,
|
246 |
-
) -> dict:
|
247 |
-
"""
|
248 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
249 |
-
|
250 |
-
Args:
|
251 |
-
encoded_inputs:
|
252 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
253 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
254 |
-
Will truncate by taking into account the special tokens.
|
255 |
-
padding_strategy: PaddingStrategy to use for padding.
|
256 |
-
|
257 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
258 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
259 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
260 |
-
The tokenizer padding sides are defined in self.padding_side:
|
261 |
-
|
262 |
-
- 'left': pads on the left of the sequences
|
263 |
-
- 'right': pads on the right of the sequences
|
264 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
265 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
266 |
-
`>= 7.5` (Volta).
|
267 |
-
return_attention_mask:
|
268 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
269 |
-
"""
|
270 |
-
# Load from model defaults
|
271 |
-
assert self.padding_side == "left"
|
272 |
-
|
273 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
274 |
-
seq_length = len(required_input)
|
275 |
-
|
276 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
277 |
-
max_length = len(required_input)
|
278 |
-
|
279 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
280 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
281 |
-
|
282 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
283 |
-
|
284 |
-
# Initialize attention mask if not present.
|
285 |
-
if "attention_mask" not in encoded_inputs:
|
286 |
-
encoded_inputs["attention_mask"] = [1] * seq_length
|
287 |
-
|
288 |
-
if "position_ids" not in encoded_inputs:
|
289 |
-
encoded_inputs["position_ids"] = list(range(seq_length))
|
290 |
-
|
291 |
-
if needs_to_be_padded:
|
292 |
-
difference = max_length - len(required_input)
|
293 |
-
|
294 |
-
if "attention_mask" in encoded_inputs:
|
295 |
-
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
296 |
-
if "position_ids" in encoded_inputs:
|
297 |
-
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
298 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
-
|
300 |
-
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
-
size 1018370
|
|
|
|
|
|
|
|
checkpoint-1100/tokenizer_config.json
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"64795": {
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"64797": {
|
12 |
-
"content": "<|observation|>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"additional_special_tokens": [
|
21 |
-
"<|user|>",
|
22 |
-
"<|observation|>"
|
23 |
-
],
|
24 |
-
"auto_map": {
|
25 |
-
"AutoTokenizer": [
|
26 |
-
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
-
null
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"clean_up_tokenization_spaces": false,
|
31 |
-
"do_lower_case": false,
|
32 |
-
"encode_special_tokens": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"model_max_length": 1000000000000000019884624838656,
|
35 |
-
"pad_token": "<unk>",
|
36 |
-
"padding_side": "right",
|
37 |
-
"remove_space": false,
|
38 |
-
"split_special_tokens": false,
|
39 |
-
"tokenizer_class": "ChatGLMTokenizer",
|
40 |
-
"unk_token": "<unk>"
|
41 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/trainer_state.json
DELETED
@@ -1,1341 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 25.0,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 1100,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.11,
|
13 |
-
"learning_rate": 0.001999898043009433,
|
14 |
-
"loss": 4.5094,
|
15 |
-
"step": 5
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"epoch": 0.23,
|
19 |
-
"learning_rate": 0.0019995921928281893,
|
20 |
-
"loss": 3.8047,
|
21 |
-
"step": 10
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"epoch": 0.34,
|
25 |
-
"learning_rate": 0.001999082511823396,
|
26 |
-
"loss": 3.8813,
|
27 |
-
"step": 15
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"epoch": 0.45,
|
31 |
-
"learning_rate": 0.0019983691039261358,
|
32 |
-
"loss": 3.7188,
|
33 |
-
"step": 20
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"epoch": 0.57,
|
37 |
-
"learning_rate": 0.0019974521146102534,
|
38 |
-
"loss": 3.6695,
|
39 |
-
"step": 25
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"epoch": 0.68,
|
43 |
-
"learning_rate": 0.001996331730862691,
|
44 |
-
"loss": 3.7078,
|
45 |
-
"step": 30
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 0.8,
|
49 |
-
"learning_rate": 0.0019950081811453595,
|
50 |
-
"loss": 3.6844,
|
51 |
-
"step": 35
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.91,
|
55 |
-
"learning_rate": 0.0019934817353485504,
|
56 |
-
"loss": 3.6961,
|
57 |
-
"step": 40
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"epoch": 1.02,
|
61 |
-
"learning_rate": 0.0019917527047359027,
|
62 |
-
"loss": 3.5758,
|
63 |
-
"step": 45
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"epoch": 1.14,
|
67 |
-
"learning_rate": 0.001989821441880933,
|
68 |
-
"loss": 3.4102,
|
69 |
-
"step": 50
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"epoch": 1.25,
|
73 |
-
"learning_rate": 0.0019876883405951376,
|
74 |
-
"loss": 3.3984,
|
75 |
-
"step": 55
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"epoch": 1.36,
|
79 |
-
"learning_rate": 0.001985353835847693,
|
80 |
-
"loss": 3.3602,
|
81 |
-
"step": 60
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"epoch": 1.48,
|
85 |
-
"learning_rate": 0.0019828184036767556,
|
86 |
-
"loss": 3.4461,
|
87 |
-
"step": 65
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"epoch": 1.59,
|
91 |
-
"learning_rate": 0.0019800825610923932,
|
92 |
-
"loss": 3.3461,
|
93 |
-
"step": 70
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 1.7,
|
97 |
-
"learning_rate": 0.0019771468659711597,
|
98 |
-
"loss": 3.4172,
|
99 |
-
"step": 75
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"epoch": 1.82,
|
103 |
-
"learning_rate": 0.0019740119169423336,
|
104 |
-
"loss": 3.4359,
|
105 |
-
"step": 80
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"epoch": 1.93,
|
109 |
-
"learning_rate": 0.0019706783532658523,
|
110 |
-
"loss": 3.5141,
|
111 |
-
"step": 85
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"epoch": 2.05,
|
115 |
-
"learning_rate": 0.001967146854701957,
|
116 |
-
"loss": 3.2242,
|
117 |
-
"step": 90
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"epoch": 2.16,
|
121 |
-
"learning_rate": 0.0019634181413725788,
|
122 |
-
"loss": 3.0227,
|
123 |
-
"step": 95
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"epoch": 2.27,
|
127 |
-
"learning_rate": 0.0019594929736144974,
|
128 |
-
"loss": 2.8984,
|
129 |
-
"step": 100
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"epoch": 2.39,
|
133 |
-
"learning_rate": 0.001955372151824297,
|
134 |
-
"loss": 3.0781,
|
135 |
-
"step": 105
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"epoch": 2.5,
|
139 |
-
"learning_rate": 0.0019510565162951536,
|
140 |
-
"loss": 3.1203,
|
141 |
-
"step": 110
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"epoch": 2.61,
|
145 |
-
"learning_rate": 0.00194654694704549,
|
146 |
-
"loss": 3.1828,
|
147 |
-
"step": 115
|
148 |
-
},
|
149 |
-
{
|
150 |
-
"epoch": 2.73,
|
151 |
-
"learning_rate": 0.0019418443636395248,
|
152 |
-
"loss": 3.0531,
|
153 |
-
"step": 120
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"epoch": 2.84,
|
157 |
-
"learning_rate": 0.001936949724999762,
|
158 |
-
"loss": 3.1523,
|
159 |
-
"step": 125
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"epoch": 2.95,
|
163 |
-
"learning_rate": 0.0019318640292114524,
|
164 |
-
"loss": 3.1156,
|
165 |
-
"step": 130
|
166 |
-
},
|
167 |
-
{
|
168 |
-
"epoch": 3.07,
|
169 |
-
"learning_rate": 0.0019265883133190713,
|
170 |
-
"loss": 2.7844,
|
171 |
-
"step": 135
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"epoch": 3.18,
|
175 |
-
"learning_rate": 0.0019211236531148502,
|
176 |
-
"loss": 2.6711,
|
177 |
-
"step": 140
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"epoch": 3.3,
|
181 |
-
"learning_rate": 0.0019154711629194062,
|
182 |
-
"loss": 2.6609,
|
183 |
-
"step": 145
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"epoch": 3.41,
|
187 |
-
"learning_rate": 0.0019096319953545184,
|
188 |
-
"loss": 2.7531,
|
189 |
-
"step": 150
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"epoch": 3.52,
|
193 |
-
"learning_rate": 0.0019036073411080917,
|
194 |
-
"loss": 2.7977,
|
195 |
-
"step": 155
|
196 |
-
},
|
197 |
-
{
|
198 |
-
"epoch": 3.64,
|
199 |
-
"learning_rate": 0.0018973984286913585,
|
200 |
-
"loss": 2.7914,
|
201 |
-
"step": 160
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"epoch": 3.75,
|
205 |
-
"learning_rate": 0.0018910065241883678,
|
206 |
-
"loss": 2.8188,
|
207 |
-
"step": 165
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"epoch": 3.86,
|
211 |
-
"learning_rate": 0.0018844329309978143,
|
212 |
-
"loss": 2.8945,
|
213 |
-
"step": 170
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"epoch": 3.98,
|
217 |
-
"learning_rate": 0.0018776789895672556,
|
218 |
-
"loss": 2.8883,
|
219 |
-
"step": 175
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"epoch": 4.09,
|
223 |
-
"learning_rate": 0.0018707460771197773,
|
224 |
-
"loss": 2.4617,
|
225 |
-
"step": 180
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"epoch": 4.2,
|
229 |
-
"learning_rate": 0.001863635607373157,
|
230 |
-
"loss": 2.4633,
|
231 |
-
"step": 185
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"epoch": 4.32,
|
235 |
-
"learning_rate": 0.001856349030251589,
|
236 |
-
"loss": 2.5094,
|
237 |
-
"step": 190
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"epoch": 4.43,
|
241 |
-
"learning_rate": 0.0018488878315900226,
|
242 |
-
"loss": 2.432,
|
243 |
-
"step": 195
|
244 |
-
},
|
245 |
-
{
|
246 |
-
"epoch": 4.55,
|
247 |
-
"learning_rate": 0.0018412535328311812,
|
248 |
-
"loss": 2.5648,
|
249 |
-
"step": 200
|
250 |
-
},
|
251 |
-
{
|
252 |
-
"epoch": 4.66,
|
253 |
-
"learning_rate": 0.0018334476907153176,
|
254 |
-
"loss": 2.4836,
|
255 |
-
"step": 205
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"epoch": 4.77,
|
259 |
-
"learning_rate": 0.001825471896962774,
|
260 |
-
"loss": 2.6617,
|
261 |
-
"step": 210
|
262 |
-
},
|
263 |
-
{
|
264 |
-
"epoch": 4.89,
|
265 |
-
"learning_rate": 0.0018173277779494068,
|
266 |
-
"loss": 2.6734,
|
267 |
-
"step": 215
|
268 |
-
},
|
269 |
-
{
|
270 |
-
"epoch": 5.0,
|
271 |
-
"learning_rate": 0.0018090169943749475,
|
272 |
-
"loss": 2.6742,
|
273 |
-
"step": 220
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"epoch": 5.11,
|
277 |
-
"learning_rate": 0.0018005412409243604,
|
278 |
-
"loss": 2.1379,
|
279 |
-
"step": 225
|
280 |
-
},
|
281 |
-
{
|
282 |
-
"epoch": 5.23,
|
283 |
-
"learning_rate": 0.0017919022459222751,
|
284 |
-
"loss": 2.1508,
|
285 |
-
"step": 230
|
286 |
-
},
|
287 |
-
{
|
288 |
-
"epoch": 5.34,
|
289 |
-
"learning_rate": 0.0017831017709805555,
|
290 |
-
"loss": 2.2582,
|
291 |
-
"step": 235
|
292 |
-
},
|
293 |
-
{
|
294 |
-
"epoch": 5.45,
|
295 |
-
"learning_rate": 0.0017741416106390826,
|
296 |
-
"loss": 2.2367,
|
297 |
-
"step": 240
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"epoch": 5.57,
|
301 |
-
"learning_rate": 0.0017650235919998232,
|
302 |
-
"loss": 2.325,
|
303 |
-
"step": 245
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"epoch": 5.68,
|
307 |
-
"learning_rate": 0.0017557495743542584,
|
308 |
-
"loss": 2.2703,
|
309 |
-
"step": 250
|
310 |
-
},
|
311 |
-
{
|
312 |
-
"epoch": 5.8,
|
313 |
-
"learning_rate": 0.0017463214488042471,
|
314 |
-
"loss": 2.3703,
|
315 |
-
"step": 255
|
316 |
-
},
|
317 |
-
{
|
318 |
-
"epoch": 5.91,
|
319 |
-
"learning_rate": 0.001736741137876405,
|
320 |
-
"loss": 2.4648,
|
321 |
-
"step": 260
|
322 |
-
},
|
323 |
-
{
|
324 |
-
"epoch": 6.02,
|
325 |
-
"learning_rate": 0.0017270105951300739,
|
326 |
-
"loss": 2.2734,
|
327 |
-
"step": 265
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"epoch": 6.14,
|
331 |
-
"learning_rate": 0.0017171318047589637,
|
332 |
-
"loss": 1.9898,
|
333 |
-
"step": 270
|
334 |
-
},
|
335 |
-
{
|
336 |
-
"epoch": 6.25,
|
337 |
-
"learning_rate": 0.0017071067811865474,
|
338 |
-
"loss": 1.9816,
|
339 |
-
"step": 275
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"epoch": 6.36,
|
343 |
-
"learning_rate": 0.0016969375686552938,
|
344 |
-
"loss": 1.9648,
|
345 |
-
"step": 280
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"epoch": 6.48,
|
349 |
-
"learning_rate": 0.0016866262408098134,
|
350 |
-
"loss": 2.1672,
|
351 |
-
"step": 285
|
352 |
-
},
|
353 |
-
{
|
354 |
-
"epoch": 6.59,
|
355 |
-
"learning_rate": 0.0016761749002740195,
|
356 |
-
"loss": 2.0074,
|
357 |
-
"step": 290
|
358 |
-
},
|
359 |
-
{
|
360 |
-
"epoch": 6.7,
|
361 |
-
"learning_rate": 0.0016655856782223683,
|
362 |
-
"loss": 2.1598,
|
363 |
-
"step": 295
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"epoch": 6.82,
|
367 |
-
"learning_rate": 0.0016548607339452852,
|
368 |
-
"loss": 2.0996,
|
369 |
-
"step": 300
|
370 |
-
},
|
371 |
-
{
|
372 |
-
"epoch": 6.93,
|
373 |
-
"learning_rate": 0.0016440022544088554,
|
374 |
-
"loss": 2.1434,
|
375 |
-
"step": 305
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"epoch": 7.05,
|
379 |
-
"learning_rate": 0.0016330124538088703,
|
380 |
-
"loss": 2.0699,
|
381 |
-
"step": 310
|
382 |
-
},
|
383 |
-
{
|
384 |
-
"epoch": 7.16,
|
385 |
-
"learning_rate": 0.0016218935731193223,
|
386 |
-
"loss": 1.7312,
|
387 |
-
"step": 315
|
388 |
-
},
|
389 |
-
{
|
390 |
-
"epoch": 7.27,
|
391 |
-
"learning_rate": 0.0016106478796354383,
|
392 |
-
"loss": 1.7799,
|
393 |
-
"step": 320
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"epoch": 7.39,
|
397 |
-
"learning_rate": 0.0015992776665113468,
|
398 |
-
"loss": 1.7008,
|
399 |
-
"step": 325
|
400 |
-
},
|
401 |
-
{
|
402 |
-
"epoch": 7.5,
|
403 |
-
"learning_rate": 0.0015877852522924731,
|
404 |
-
"loss": 1.8969,
|
405 |
-
"step": 330
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"epoch": 7.61,
|
409 |
-
"learning_rate": 0.0015761729804427528,
|
410 |
-
"loss": 1.8156,
|
411 |
-
"step": 335
|
412 |
-
},
|
413 |
-
{
|
414 |
-
"epoch": 7.73,
|
415 |
-
"learning_rate": 0.0015644432188667695,
|
416 |
-
"loss": 1.9336,
|
417 |
-
"step": 340
|
418 |
-
},
|
419 |
-
{
|
420 |
-
"epoch": 7.84,
|
421 |
-
"learning_rate": 0.0015525983594269026,
|
422 |
-
"loss": 1.9918,
|
423 |
-
"step": 345
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"epoch": 7.95,
|
427 |
-
"learning_rate": 0.0015406408174555976,
|
428 |
-
"loss": 2.0055,
|
429 |
-
"step": 350
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"epoch": 8.07,
|
433 |
-
"learning_rate": 0.0015285730312628418,
|
434 |
-
"loss": 1.7168,
|
435 |
-
"step": 355
|
436 |
-
},
|
437 |
-
{
|
438 |
-
"epoch": 8.18,
|
439 |
-
"learning_rate": 0.001516397461638962,
|
440 |
-
"loss": 1.5531,
|
441 |
-
"step": 360
|
442 |
-
},
|
443 |
-
{
|
444 |
-
"epoch": 8.3,
|
445 |
-
"learning_rate": 0.001504116591352832,
|
446 |
-
"loss": 1.5922,
|
447 |
-
"step": 365
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"epoch": 8.41,
|
451 |
-
"learning_rate": 0.001491732924645604,
|
452 |
-
"loss": 1.618,
|
453 |
-
"step": 370
|
454 |
-
},
|
455 |
-
{
|
456 |
-
"epoch": 8.52,
|
457 |
-
"learning_rate": 0.0014792489867200569,
|
458 |
-
"loss": 1.6738,
|
459 |
-
"step": 375
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"epoch": 8.64,
|
463 |
-
"learning_rate": 0.0014666673232256737,
|
464 |
-
"loss": 1.7461,
|
465 |
-
"step": 380
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"epoch": 8.75,
|
469 |
-
"learning_rate": 0.0014539904997395467,
|
470 |
-
"loss": 1.6746,
|
471 |
-
"step": 385
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"epoch": 8.86,
|
475 |
-
"learning_rate": 0.0014412211012432212,
|
476 |
-
"loss": 1.7711,
|
477 |
-
"step": 390
|
478 |
-
},
|
479 |
-
{
|
480 |
-
"epoch": 8.98,
|
481 |
-
"learning_rate": 0.0014283617315955814,
|
482 |
-
"loss": 1.8387,
|
483 |
-
"step": 395
|
484 |
-
},
|
485 |
-
{
|
486 |
-
"epoch": 9.09,
|
487 |
-
"learning_rate": 0.0014154150130018866,
|
488 |
-
"loss": 1.475,
|
489 |
-
"step": 400
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"epoch": 9.2,
|
493 |
-
"learning_rate": 0.001402383585479068,
|
494 |
-
"loss": 1.4523,
|
495 |
-
"step": 405
|
496 |
-
},
|
497 |
-
{
|
498 |
-
"epoch": 9.32,
|
499 |
-
"learning_rate": 0.0013892701063173917,
|
500 |
-
"loss": 1.4812,
|
501 |
-
"step": 410
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"epoch": 9.43,
|
505 |
-
"learning_rate": 0.0013760772495385997,
|
506 |
-
"loss": 1.525,
|
507 |
-
"step": 415
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"epoch": 9.55,
|
511 |
-
"learning_rate": 0.001362807705350641,
|
512 |
-
"loss": 1.398,
|
513 |
-
"step": 420
|
514 |
-
},
|
515 |
-
{
|
516 |
-
"epoch": 9.66,
|
517 |
-
"learning_rate": 0.0013494641795990985,
|
518 |
-
"loss": 1.4477,
|
519 |
-
"step": 425
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"epoch": 9.77,
|
523 |
-
"learning_rate": 0.00133604939321543,
|
524 |
-
"loss": 1.5801,
|
525 |
-
"step": 430
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"epoch": 9.89,
|
529 |
-
"learning_rate": 0.0013225660816621341,
|
530 |
-
"loss": 1.6422,
|
531 |
-
"step": 435
|
532 |
-
},
|
533 |
-
{
|
534 |
-
"epoch": 10.0,
|
535 |
-
"learning_rate": 0.0013090169943749475,
|
536 |
-
"loss": 1.5535,
|
537 |
-
"step": 440
|
538 |
-
},
|
539 |
-
{
|
540 |
-
"epoch": 10.11,
|
541 |
-
"learning_rate": 0.0012954048942022001,
|
542 |
-
"loss": 1.2324,
|
543 |
-
"step": 445
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"epoch": 10.23,
|
547 |
-
"learning_rate": 0.0012817325568414298,
|
548 |
-
"loss": 1.2613,
|
549 |
-
"step": 450
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"epoch": 10.34,
|
553 |
-
"learning_rate": 0.001268002770273379,
|
554 |
-
"loss": 1.3293,
|
555 |
-
"step": 455
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"epoch": 10.45,
|
559 |
-
"learning_rate": 0.0012542183341934872,
|
560 |
-
"loss": 1.2852,
|
561 |
-
"step": 460
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"epoch": 10.57,
|
565 |
-
"learning_rate": 0.0012403820594409924,
|
566 |
-
"loss": 1.3295,
|
567 |
-
"step": 465
|
568 |
-
},
|
569 |
-
{
|
570 |
-
"epoch": 10.68,
|
571 |
-
"learning_rate": 0.0012264967674257645,
|
572 |
-
"loss": 1.3287,
|
573 |
-
"step": 470
|
574 |
-
},
|
575 |
-
{
|
576 |
-
"epoch": 10.8,
|
577 |
-
"learning_rate": 0.0012125652895529767,
|
578 |
-
"loss": 1.3566,
|
579 |
-
"step": 475
|
580 |
-
},
|
581 |
-
{
|
582 |
-
"epoch": 10.91,
|
583 |
-
"learning_rate": 0.0011985904666457455,
|
584 |
-
"loss": 1.4414,
|
585 |
-
"step": 480
|
586 |
-
},
|
587 |
-
{
|
588 |
-
"epoch": 11.02,
|
589 |
-
"learning_rate": 0.0011845751483658454,
|
590 |
-
"loss": 1.3695,
|
591 |
-
"step": 485
|
592 |
-
},
|
593 |
-
{
|
594 |
-
"epoch": 11.14,
|
595 |
-
"learning_rate": 0.0011705221926326238,
|
596 |
-
"loss": 1.1363,
|
597 |
-
"step": 490
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"epoch": 11.25,
|
601 |
-
"learning_rate": 0.001156434465040231,
|
602 |
-
"loss": 1.1354,
|
603 |
-
"step": 495
|
604 |
-
},
|
605 |
-
{
|
606 |
-
"epoch": 11.36,
|
607 |
-
"learning_rate": 0.0011423148382732854,
|
608 |
-
"loss": 1.0725,
|
609 |
-
"step": 500
|
610 |
-
},
|
611 |
-
{
|
612 |
-
"epoch": 11.48,
|
613 |
-
"learning_rate": 0.001128166191521093,
|
614 |
-
"loss": 1.1754,
|
615 |
-
"step": 505
|
616 |
-
},
|
617 |
-
{
|
618 |
-
"epoch": 11.59,
|
619 |
-
"learning_rate": 0.0011139914098905405,
|
620 |
-
"loss": 1.1848,
|
621 |
-
"step": 510
|
622 |
-
},
|
623 |
-
{
|
624 |
-
"epoch": 11.7,
|
625 |
-
"learning_rate": 0.0010997933838177826,
|
626 |
-
"loss": 1.2354,
|
627 |
-
"step": 515
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"epoch": 11.82,
|
631 |
-
"learning_rate": 0.0010855750084788399,
|
632 |
-
"loss": 1.1984,
|
633 |
-
"step": 520
|
634 |
-
},
|
635 |
-
{
|
636 |
-
"epoch": 11.93,
|
637 |
-
"learning_rate": 0.0010713391831992322,
|
638 |
-
"loss": 1.2666,
|
639 |
-
"step": 525
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"epoch": 12.05,
|
643 |
-
"learning_rate": 0.001057088810862768,
|
644 |
-
"loss": 1.1408,
|
645 |
-
"step": 530
|
646 |
-
},
|
647 |
-
{
|
648 |
-
"epoch": 12.16,
|
649 |
-
"learning_rate": 0.0010428267973196027,
|
650 |
-
"loss": 0.9385,
|
651 |
-
"step": 535
|
652 |
-
},
|
653 |
-
{
|
654 |
-
"epoch": 12.27,
|
655 |
-
"learning_rate": 0.0010285560507936962,
|
656 |
-
"loss": 1.0158,
|
657 |
-
"step": 540
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"epoch": 12.39,
|
661 |
-
"learning_rate": 0.0010142794812897874,
|
662 |
-
"loss": 0.9936,
|
663 |
-
"step": 545
|
664 |
-
},
|
665 |
-
{
|
666 |
-
"epoch": 12.5,
|
667 |
-
"learning_rate": 0.001,
|
668 |
-
"loss": 0.9891,
|
669 |
-
"step": 550
|
670 |
-
},
|
671 |
-
{
|
672 |
-
"epoch": 12.61,
|
673 |
-
"learning_rate": 0.000985720518710213,
|
674 |
-
"loss": 1.0684,
|
675 |
-
"step": 555
|
676 |
-
},
|
677 |
-
{
|
678 |
-
"epoch": 12.73,
|
679 |
-
"learning_rate": 0.0009714439492063038,
|
680 |
-
"loss": 1.076,
|
681 |
-
"step": 560
|
682 |
-
},
|
683 |
-
{
|
684 |
-
"epoch": 12.84,
|
685 |
-
"learning_rate": 0.0009571732026803976,
|
686 |
-
"loss": 1.0609,
|
687 |
-
"step": 565
|
688 |
-
},
|
689 |
-
{
|
690 |
-
"epoch": 12.95,
|
691 |
-
"learning_rate": 0.000942911189137232,
|
692 |
-
"loss": 1.1297,
|
693 |
-
"step": 570
|
694 |
-
},
|
695 |
-
{
|
696 |
-
"epoch": 13.07,
|
697 |
-
"learning_rate": 0.0009286608168007677,
|
698 |
-
"loss": 0.9342,
|
699 |
-
"step": 575
|
700 |
-
},
|
701 |
-
{
|
702 |
-
"epoch": 13.18,
|
703 |
-
"learning_rate": 0.0009144249915211606,
|
704 |
-
"loss": 0.8511,
|
705 |
-
"step": 580
|
706 |
-
},
|
707 |
-
{
|
708 |
-
"epoch": 13.3,
|
709 |
-
"learning_rate": 0.0009002066161822172,
|
710 |
-
"loss": 0.8336,
|
711 |
-
"step": 585
|
712 |
-
},
|
713 |
-
{
|
714 |
-
"epoch": 13.41,
|
715 |
-
"learning_rate": 0.0008860085901094594,
|
716 |
-
"loss": 0.8652,
|
717 |
-
"step": 590
|
718 |
-
},
|
719 |
-
{
|
720 |
-
"epoch": 13.52,
|
721 |
-
"learning_rate": 0.0008718338084789072,
|
722 |
-
"loss": 0.9744,
|
723 |
-
"step": 595
|
724 |
-
},
|
725 |
-
{
|
726 |
-
"epoch": 13.64,
|
727 |
-
"learning_rate": 0.000857685161726715,
|
728 |
-
"loss": 0.9006,
|
729 |
-
"step": 600
|
730 |
-
},
|
731 |
-
{
|
732 |
-
"epoch": 13.75,
|
733 |
-
"learning_rate": 0.000843565534959769,
|
734 |
-
"loss": 0.9619,
|
735 |
-
"step": 605
|
736 |
-
},
|
737 |
-
{
|
738 |
-
"epoch": 13.86,
|
739 |
-
"learning_rate": 0.0008294778073673762,
|
740 |
-
"loss": 0.9123,
|
741 |
-
"step": 610
|
742 |
-
},
|
743 |
-
{
|
744 |
-
"epoch": 13.98,
|
745 |
-
"learning_rate": 0.0008154248516341547,
|
746 |
-
"loss": 0.9959,
|
747 |
-
"step": 615
|
748 |
-
},
|
749 |
-
{
|
750 |
-
"epoch": 14.09,
|
751 |
-
"learning_rate": 0.0008014095333542549,
|
752 |
-
"loss": 0.7503,
|
753 |
-
"step": 620
|
754 |
-
},
|
755 |
-
{
|
756 |
-
"epoch": 14.2,
|
757 |
-
"learning_rate": 0.0007874347104470233,
|
758 |
-
"loss": 0.7357,
|
759 |
-
"step": 625
|
760 |
-
},
|
761 |
-
{
|
762 |
-
"epoch": 14.32,
|
763 |
-
"learning_rate": 0.0007735032325742355,
|
764 |
-
"loss": 0.7477,
|
765 |
-
"step": 630
|
766 |
-
},
|
767 |
-
{
|
768 |
-
"epoch": 14.43,
|
769 |
-
"learning_rate": 0.0007596179405590076,
|
770 |
-
"loss": 0.8088,
|
771 |
-
"step": 635
|
772 |
-
},
|
773 |
-
{
|
774 |
-
"epoch": 14.55,
|
775 |
-
"learning_rate": 0.0007457816658065133,
|
776 |
-
"loss": 0.7652,
|
777 |
-
"step": 640
|
778 |
-
},
|
779 |
-
{
|
780 |
-
"epoch": 14.66,
|
781 |
-
"learning_rate": 0.0007319972297266214,
|
782 |
-
"loss": 0.7847,
|
783 |
-
"step": 645
|
784 |
-
},
|
785 |
-
{
|
786 |
-
"epoch": 14.77,
|
787 |
-
"learning_rate": 0.0007182674431585703,
|
788 |
-
"loss": 0.7984,
|
789 |
-
"step": 650
|
790 |
-
},
|
791 |
-
{
|
792 |
-
"epoch": 14.89,
|
793 |
-
"learning_rate": 0.0007045951057978,
|
794 |
-
"loss": 0.8732,
|
795 |
-
"step": 655
|
796 |
-
},
|
797 |
-
{
|
798 |
-
"epoch": 15.0,
|
799 |
-
"learning_rate": 0.0006909830056250527,
|
800 |
-
"loss": 0.8258,
|
801 |
-
"step": 660
|
802 |
-
},
|
803 |
-
{
|
804 |
-
"epoch": 15.11,
|
805 |
-
"learning_rate": 0.0006774339183378663,
|
806 |
-
"loss": 0.6311,
|
807 |
-
"step": 665
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"epoch": 15.23,
|
811 |
-
"learning_rate": 0.0006639506067845697,
|
812 |
-
"loss": 0.6543,
|
813 |
-
"step": 670
|
814 |
-
},
|
815 |
-
{
|
816 |
-
"epoch": 15.34,
|
817 |
-
"learning_rate": 0.0006505358204009018,
|
818 |
-
"loss": 0.6421,
|
819 |
-
"step": 675
|
820 |
-
},
|
821 |
-
{
|
822 |
-
"epoch": 15.45,
|
823 |
-
"learning_rate": 0.0006371922946493591,
|
824 |
-
"loss": 0.6937,
|
825 |
-
"step": 680
|
826 |
-
},
|
827 |
-
{
|
828 |
-
"epoch": 15.57,
|
829 |
-
"learning_rate": 0.0006239227504614003,
|
830 |
-
"loss": 0.6887,
|
831 |
-
"step": 685
|
832 |
-
},
|
833 |
-
{
|
834 |
-
"epoch": 15.68,
|
835 |
-
"learning_rate": 0.0006107298936826086,
|
836 |
-
"loss": 0.7097,
|
837 |
-
"step": 690
|
838 |
-
},
|
839 |
-
{
|
840 |
-
"epoch": 15.8,
|
841 |
-
"learning_rate": 0.0005976164145209322,
|
842 |
-
"loss": 0.6778,
|
843 |
-
"step": 695
|
844 |
-
},
|
845 |
-
{
|
846 |
-
"epoch": 15.91,
|
847 |
-
"learning_rate": 0.0005845849869981136,
|
848 |
-
"loss": 0.7124,
|
849 |
-
"step": 700
|
850 |
-
},
|
851 |
-
{
|
852 |
-
"epoch": 16.02,
|
853 |
-
"learning_rate": 0.000571638268404419,
|
854 |
-
"loss": 0.7053,
|
855 |
-
"step": 705
|
856 |
-
},
|
857 |
-
{
|
858 |
-
"epoch": 16.14,
|
859 |
-
"learning_rate": 0.0005587788987567784,
|
860 |
-
"loss": 0.5863,
|
861 |
-
"step": 710
|
862 |
-
},
|
863 |
-
{
|
864 |
-
"epoch": 16.25,
|
865 |
-
"learning_rate": 0.0005460095002604533,
|
866 |
-
"loss": 0.5588,
|
867 |
-
"step": 715
|
868 |
-
},
|
869 |
-
{
|
870 |
-
"epoch": 16.36,
|
871 |
-
"learning_rate": 0.0005333326767743263,
|
872 |
-
"loss": 0.5363,
|
873 |
-
"step": 720
|
874 |
-
},
|
875 |
-
{
|
876 |
-
"epoch": 16.48,
|
877 |
-
"learning_rate": 0.0005207510132799435,
|
878 |
-
"loss": 0.6137,
|
879 |
-
"step": 725
|
880 |
-
},
|
881 |
-
{
|
882 |
-
"epoch": 16.59,
|
883 |
-
"learning_rate": 0.0005082670753543961,
|
884 |
-
"loss": 0.5606,
|
885 |
-
"step": 730
|
886 |
-
},
|
887 |
-
{
|
888 |
-
"epoch": 16.7,
|
889 |
-
"learning_rate": 0.0004958834086471683,
|
890 |
-
"loss": 0.629,
|
891 |
-
"step": 735
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"epoch": 16.82,
|
895 |
-
"learning_rate": 0.00048360253836103817,
|
896 |
-
"loss": 0.5754,
|
897 |
-
"step": 740
|
898 |
-
},
|
899 |
-
{
|
900 |
-
"epoch": 16.93,
|
901 |
-
"learning_rate": 0.0004714269687371581,
|
902 |
-
"loss": 0.6239,
|
903 |
-
"step": 745
|
904 |
-
},
|
905 |
-
{
|
906 |
-
"epoch": 17.05,
|
907 |
-
"learning_rate": 0.0004593591825444028,
|
908 |
-
"loss": 0.5807,
|
909 |
-
"step": 750
|
910 |
-
},
|
911 |
-
{
|
912 |
-
"epoch": 17.16,
|
913 |
-
"learning_rate": 0.0004474016405730973,
|
914 |
-
"loss": 0.465,
|
915 |
-
"step": 755
|
916 |
-
},
|
917 |
-
{
|
918 |
-
"epoch": 17.27,
|
919 |
-
"learning_rate": 0.00043555678113323104,
|
920 |
-
"loss": 0.4871,
|
921 |
-
"step": 760
|
922 |
-
},
|
923 |
-
{
|
924 |
-
"epoch": 17.39,
|
925 |
-
"learning_rate": 0.00042382701955724725,
|
926 |
-
"loss": 0.4623,
|
927 |
-
"step": 765
|
928 |
-
},
|
929 |
-
{
|
930 |
-
"epoch": 17.5,
|
931 |
-
"learning_rate": 0.00041221474770752696,
|
932 |
-
"loss": 0.5059,
|
933 |
-
"step": 770
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"epoch": 17.61,
|
937 |
-
"learning_rate": 0.00040072233348865304,
|
938 |
-
"loss": 0.5021,
|
939 |
-
"step": 775
|
940 |
-
},
|
941 |
-
{
|
942 |
-
"epoch": 17.73,
|
943 |
-
"learning_rate": 0.0003893521203645618,
|
944 |
-
"loss": 0.5138,
|
945 |
-
"step": 780
|
946 |
-
},
|
947 |
-
{
|
948 |
-
"epoch": 17.84,
|
949 |
-
"learning_rate": 0.00037810642688067796,
|
950 |
-
"loss": 0.5212,
|
951 |
-
"step": 785
|
952 |
-
},
|
953 |
-
{
|
954 |
-
"epoch": 17.95,
|
955 |
-
"learning_rate": 0.00036698754619112975,
|
956 |
-
"loss": 0.5611,
|
957 |
-
"step": 790
|
958 |
-
},
|
959 |
-
{
|
960 |
-
"epoch": 18.07,
|
961 |
-
"learning_rate": 0.00035599774559114475,
|
962 |
-
"loss": 0.4956,
|
963 |
-
"step": 795
|
964 |
-
},
|
965 |
-
{
|
966 |
-
"epoch": 18.18,
|
967 |
-
"learning_rate": 0.000345139266054715,
|
968 |
-
"loss": 0.4243,
|
969 |
-
"step": 800
|
970 |
-
},
|
971 |
-
{
|
972 |
-
"epoch": 18.3,
|
973 |
-
"learning_rate": 0.0003344143217776319,
|
974 |
-
"loss": 0.4391,
|
975 |
-
"step": 805
|
976 |
-
},
|
977 |
-
{
|
978 |
-
"epoch": 18.41,
|
979 |
-
"learning_rate": 0.00032382509972598086,
|
980 |
-
"loss": 0.4627,
|
981 |
-
"step": 810
|
982 |
-
},
|
983 |
-
{
|
984 |
-
"epoch": 18.52,
|
985 |
-
"learning_rate": 0.0003133737591901864,
|
986 |
-
"loss": 0.4208,
|
987 |
-
"step": 815
|
988 |
-
},
|
989 |
-
{
|
990 |
-
"epoch": 18.64,
|
991 |
-
"learning_rate": 0.0003030624313447067,
|
992 |
-
"loss": 0.45,
|
993 |
-
"step": 820
|
994 |
-
},
|
995 |
-
{
|
996 |
-
"epoch": 18.75,
|
997 |
-
"learning_rate": 0.00029289321881345256,
|
998 |
-
"loss": 0.44,
|
999 |
-
"step": 825
|
1000 |
-
},
|
1001 |
-
{
|
1002 |
-
"epoch": 18.86,
|
1003 |
-
"learning_rate": 0.0002828681952410366,
|
1004 |
-
"loss": 0.4451,
|
1005 |
-
"step": 830
|
1006 |
-
},
|
1007 |
-
{
|
1008 |
-
"epoch": 18.98,
|
1009 |
-
"learning_rate": 0.0002729894048699265,
|
1010 |
-
"loss": 0.4494,
|
1011 |
-
"step": 835
|
1012 |
-
},
|
1013 |
-
{
|
1014 |
-
"epoch": 19.09,
|
1015 |
-
"learning_rate": 0.00026325886212359495,
|
1016 |
-
"loss": 0.3839,
|
1017 |
-
"step": 840
|
1018 |
-
},
|
1019 |
-
{
|
1020 |
-
"epoch": 19.2,
|
1021 |
-
"learning_rate": 0.0002536785511957531,
|
1022 |
-
"loss": 0.3728,
|
1023 |
-
"step": 845
|
1024 |
-
},
|
1025 |
-
{
|
1026 |
-
"epoch": 19.32,
|
1027 |
-
"learning_rate": 0.00024425042564574185,
|
1028 |
-
"loss": 0.4126,
|
1029 |
-
"step": 850
|
1030 |
-
},
|
1031 |
-
{
|
1032 |
-
"epoch": 19.43,
|
1033 |
-
"learning_rate": 0.00023497640800017682,
|
1034 |
-
"loss": 0.4183,
|
1035 |
-
"step": 855
|
1036 |
-
},
|
1037 |
-
{
|
1038 |
-
"epoch": 19.55,
|
1039 |
-
"learning_rate": 0.0002258583893609175,
|
1040 |
-
"loss": 0.3778,
|
1041 |
-
"step": 860
|
1042 |
-
},
|
1043 |
-
{
|
1044 |
-
"epoch": 19.66,
|
1045 |
-
"learning_rate": 0.00021689822901944456,
|
1046 |
-
"loss": 0.3758,
|
1047 |
-
"step": 865
|
1048 |
-
},
|
1049 |
-
{
|
1050 |
-
"epoch": 19.77,
|
1051 |
-
"learning_rate": 0.000208097754077725,
|
1052 |
-
"loss": 0.4034,
|
1053 |
-
"step": 870
|
1054 |
-
},
|
1055 |
-
{
|
1056 |
-
"epoch": 19.89,
|
1057 |
-
"learning_rate": 0.0001994587590756397,
|
1058 |
-
"loss": 0.4085,
|
1059 |
-
"step": 875
|
1060 |
-
},
|
1061 |
-
{
|
1062 |
-
"epoch": 20.0,
|
1063 |
-
"learning_rate": 0.00019098300562505265,
|
1064 |
-
"loss": 0.3673,
|
1065 |
-
"step": 880
|
1066 |
-
},
|
1067 |
-
{
|
1068 |
-
"epoch": 20.11,
|
1069 |
-
"learning_rate": 0.0001826722220505931,
|
1070 |
-
"loss": 0.363,
|
1071 |
-
"step": 885
|
1072 |
-
},
|
1073 |
-
{
|
1074 |
-
"epoch": 20.23,
|
1075 |
-
"learning_rate": 0.000174528103037226,
|
1076 |
-
"loss": 0.3707,
|
1077 |
-
"step": 890
|
1078 |
-
},
|
1079 |
-
{
|
1080 |
-
"epoch": 20.34,
|
1081 |
-
"learning_rate": 0.00016655230928468257,
|
1082 |
-
"loss": 0.369,
|
1083 |
-
"step": 895
|
1084 |
-
},
|
1085 |
-
{
|
1086 |
-
"epoch": 20.45,
|
1087 |
-
"learning_rate": 0.00015874646716881869,
|
1088 |
-
"loss": 0.3528,
|
1089 |
-
"step": 900
|
1090 |
-
},
|
1091 |
-
{
|
1092 |
-
"epoch": 20.57,
|
1093 |
-
"learning_rate": 0.00015111216840997744,
|
1094 |
-
"loss": 0.3581,
|
1095 |
-
"step": 905
|
1096 |
-
},
|
1097 |
-
{
|
1098 |
-
"epoch": 20.68,
|
1099 |
-
"learning_rate": 0.00014365096974841107,
|
1100 |
-
"loss": 0.3466,
|
1101 |
-
"step": 910
|
1102 |
-
},
|
1103 |
-
{
|
1104 |
-
"epoch": 20.8,
|
1105 |
-
"learning_rate": 0.00013636439262684297,
|
1106 |
-
"loss": 0.3274,
|
1107 |
-
"step": 915
|
1108 |
-
},
|
1109 |
-
{
|
1110 |
-
"epoch": 20.91,
|
1111 |
-
"learning_rate": 0.00012925392288022297,
|
1112 |
-
"loss": 0.3401,
|
1113 |
-
"step": 920
|
1114 |
-
},
|
1115 |
-
{
|
1116 |
-
"epoch": 21.02,
|
1117 |
-
"learning_rate": 0.00012232101043274435,
|
1118 |
-
"loss": 0.3435,
|
1119 |
-
"step": 925
|
1120 |
-
},
|
1121 |
-
{
|
1122 |
-
"epoch": 21.14,
|
1123 |
-
"learning_rate": 0.00011556706900218572,
|
1124 |
-
"loss": 0.2972,
|
1125 |
-
"step": 930
|
1126 |
-
},
|
1127 |
-
{
|
1128 |
-
"epoch": 21.25,
|
1129 |
-
"learning_rate": 0.00010899347581163222,
|
1130 |
-
"loss": 0.3153,
|
1131 |
-
"step": 935
|
1132 |
-
},
|
1133 |
-
{
|
1134 |
-
"epoch": 21.36,
|
1135 |
-
"learning_rate": 0.00010260157130864178,
|
1136 |
-
"loss": 0.3315,
|
1137 |
-
"step": 940
|
1138 |
-
},
|
1139 |
-
{
|
1140 |
-
"epoch": 21.48,
|
1141 |
-
"learning_rate": 9.639265889190829e-05,
|
1142 |
-
"loss": 0.3264,
|
1143 |
-
"step": 945
|
1144 |
-
},
|
1145 |
-
{
|
1146 |
-
"epoch": 21.59,
|
1147 |
-
"learning_rate": 9.036800464548156e-05,
|
1148 |
-
"loss": 0.3427,
|
1149 |
-
"step": 950
|
1150 |
-
},
|
1151 |
-
{
|
1152 |
-
"epoch": 21.7,
|
1153 |
-
"learning_rate": 8.4528837080594e-05,
|
1154 |
-
"loss": 0.3415,
|
1155 |
-
"step": 955
|
1156 |
-
},
|
1157 |
-
{
|
1158 |
-
"epoch": 21.82,
|
1159 |
-
"learning_rate": 7.887634688515e-05,
|
1160 |
-
"loss": 0.323,
|
1161 |
-
"step": 960
|
1162 |
-
},
|
1163 |
-
{
|
1164 |
-
"epoch": 21.93,
|
1165 |
-
"learning_rate": 7.341168668092857e-05,
|
1166 |
-
"loss": 0.2961,
|
1167 |
-
"step": 965
|
1168 |
-
},
|
1169 |
-
{
|
1170 |
-
"epoch": 22.05,
|
1171 |
-
"learning_rate": 6.813597078854772e-05,
|
1172 |
-
"loss": 0.3276,
|
1173 |
-
"step": 970
|
1174 |
-
},
|
1175 |
-
{
|
1176 |
-
"epoch": 22.16,
|
1177 |
-
"learning_rate": 6.305027500023842e-05,
|
1178 |
-
"loss": 0.3045,
|
1179 |
-
"step": 975
|
1180 |
-
},
|
1181 |
-
{
|
1182 |
-
"epoch": 22.27,
|
1183 |
-
"learning_rate": 5.8155636360475384e-05,
|
1184 |
-
"loss": 0.3167,
|
1185 |
-
"step": 980
|
1186 |
-
},
|
1187 |
-
{
|
1188 |
-
"epoch": 22.39,
|
1189 |
-
"learning_rate": 5.345305295450997e-05,
|
1190 |
-
"loss": 0.319,
|
1191 |
-
"step": 985
|
1192 |
-
},
|
1193 |
-
{
|
1194 |
-
"epoch": 22.5,
|
1195 |
-
"learning_rate": 4.894348370484647e-05,
|
1196 |
-
"loss": 0.2852,
|
1197 |
-
"step": 990
|
1198 |
-
},
|
1199 |
-
{
|
1200 |
-
"epoch": 22.61,
|
1201 |
-
"learning_rate": 4.4627848175703315e-05,
|
1202 |
-
"loss": 0.3034,
|
1203 |
-
"step": 995
|
1204 |
-
},
|
1205 |
-
{
|
1206 |
-
"epoch": 22.73,
|
1207 |
-
"learning_rate": 4.050702638550274e-05,
|
1208 |
-
"loss": 0.2845,
|
1209 |
-
"step": 1000
|
1210 |
-
},
|
1211 |
-
{
|
1212 |
-
"epoch": 22.84,
|
1213 |
-
"learning_rate": 3.658185862742103e-05,
|
1214 |
-
"loss": 0.3136,
|
1215 |
-
"step": 1005
|
1216 |
-
},
|
1217 |
-
{
|
1218 |
-
"epoch": 22.95,
|
1219 |
-
"learning_rate": 3.285314529804295e-05,
|
1220 |
-
"loss": 0.3187,
|
1221 |
-
"step": 1010
|
1222 |
-
},
|
1223 |
-
{
|
1224 |
-
"epoch": 23.07,
|
1225 |
-
"learning_rate": 2.93216467341475e-05,
|
1226 |
-
"loss": 0.2907,
|
1227 |
-
"step": 1015
|
1228 |
-
},
|
1229 |
-
{
|
1230 |
-
"epoch": 23.18,
|
1231 |
-
"learning_rate": 2.5988083057666535e-05,
|
1232 |
-
"loss": 0.2955,
|
1233 |
-
"step": 1020
|
1234 |
-
},
|
1235 |
-
{
|
1236 |
-
"epoch": 23.3,
|
1237 |
-
"learning_rate": 2.2853134028840594e-05,
|
1238 |
-
"loss": 0.2785,
|
1239 |
-
"step": 1025
|
1240 |
-
},
|
1241 |
-
{
|
1242 |
-
"epoch": 23.41,
|
1243 |
-
"learning_rate": 1.9917438907606554e-05,
|
1244 |
-
"loss": 0.3369,
|
1245 |
-
"step": 1030
|
1246 |
-
},
|
1247 |
-
{
|
1248 |
-
"epoch": 23.52,
|
1249 |
-
"learning_rate": 1.7181596323244453e-05,
|
1250 |
-
"loss": 0.2837,
|
1251 |
-
"step": 1035
|
1252 |
-
},
|
1253 |
-
{
|
1254 |
-
"epoch": 23.64,
|
1255 |
-
"learning_rate": 1.4646164152307017e-05,
|
1256 |
-
"loss": 0.3002,
|
1257 |
-
"step": 1040
|
1258 |
-
},
|
1259 |
-
{
|
1260 |
-
"epoch": 23.75,
|
1261 |
-
"learning_rate": 1.231165940486234e-05,
|
1262 |
-
"loss": 0.3062,
|
1263 |
-
"step": 1045
|
1264 |
-
},
|
1265 |
-
{
|
1266 |
-
"epoch": 23.86,
|
1267 |
-
"learning_rate": 1.0178558119067316e-05,
|
1268 |
-
"loss": 0.2859,
|
1269 |
-
"step": 1050
|
1270 |
-
},
|
1271 |
-
{
|
1272 |
-
"epoch": 23.98,
|
1273 |
-
"learning_rate": 8.247295264097288e-06,
|
1274 |
-
"loss": 0.284,
|
1275 |
-
"step": 1055
|
1276 |
-
},
|
1277 |
-
{
|
1278 |
-
"epoch": 24.09,
|
1279 |
-
"learning_rate": 6.518264651449779e-06,
|
1280 |
-
"loss": 0.2607,
|
1281 |
-
"step": 1060
|
1282 |
-
},
|
1283 |
-
{
|
1284 |
-
"epoch": 24.2,
|
1285 |
-
"learning_rate": 4.991818854640395e-06,
|
1286 |
-
"loss": 0.3164,
|
1287 |
-
"step": 1065
|
1288 |
-
},
|
1289 |
-
{
|
1290 |
-
"epoch": 24.32,
|
1291 |
-
"learning_rate": 3.6682691373086663e-06,
|
1292 |
-
"loss": 0.2597,
|
1293 |
-
"step": 1070
|
1294 |
-
},
|
1295 |
-
{
|
1296 |
-
"epoch": 24.43,
|
1297 |
-
"learning_rate": 2.5478853897464847e-06,
|
1298 |
-
"loss": 0.2907,
|
1299 |
-
"step": 1075
|
1300 |
-
},
|
1301 |
-
{
|
1302 |
-
"epoch": 24.55,
|
1303 |
-
"learning_rate": 1.630896073864352e-06,
|
1304 |
-
"loss": 0.3033,
|
1305 |
-
"step": 1080
|
1306 |
-
},
|
1307 |
-
{
|
1308 |
-
"epoch": 24.66,
|
1309 |
-
"learning_rate": 9.174881766043087e-07,
|
1310 |
-
"loss": 0.3089,
|
1311 |
-
"step": 1085
|
1312 |
-
},
|
1313 |
-
{
|
1314 |
-
"epoch": 24.77,
|
1315 |
-
"learning_rate": 4.078071718107701e-07,
|
1316 |
-
"loss": 0.2964,
|
1317 |
-
"step": 1090
|
1318 |
-
},
|
1319 |
-
{
|
1320 |
-
"epoch": 24.89,
|
1321 |
-
"learning_rate": 1.0195699056669839e-07,
|
1322 |
-
"loss": 0.2995,
|
1323 |
-
"step": 1095
|
1324 |
-
},
|
1325 |
-
{
|
1326 |
-
"epoch": 25.0,
|
1327 |
-
"learning_rate": 0.0,
|
1328 |
-
"loss": 0.2936,
|
1329 |
-
"step": 1100
|
1330 |
-
}
|
1331 |
-
],
|
1332 |
-
"logging_steps": 5,
|
1333 |
-
"max_steps": 1100,
|
1334 |
-
"num_input_tokens_seen": 0,
|
1335 |
-
"num_train_epochs": 25,
|
1336 |
-
"save_steps": 100,
|
1337 |
-
"total_flos": 5.602696856046797e+17,
|
1338 |
-
"train_batch_size": 4,
|
1339 |
-
"trial_name": null,
|
1340 |
-
"trial_params": null
|
1341 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-1100/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fef6a3ae006ec4c51dbcf0a3e569288ca5ab1bbc97f41768934c32153b03277c
|
3 |
-
size 4920
|
|
|
|
|
|
|
|
checkpoint-200/README.md
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: peft
|
3 |
-
base_model: /root/chatglm3-6b
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
202 |
-
### Framework versions
|
203 |
-
|
204 |
-
- PEFT 0.7.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/adapter_config.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/root/chatglm3-6b",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 64.0,
|
13 |
-
"lora_dropout": 0.1,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 32,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"query_key_value"
|
23 |
-
],
|
24 |
-
"task_type": "CAUSAL_LM"
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d9079a8f13b0b663beb8af4a69f38304ffb47f535efa9d4fc2f28235905d33d6
|
3 |
-
size 31204248
|
|
|
|
|
|
|
|
checkpoint-200/optimizer.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d3c20e12a6fe7711738ea34dd0ceeb02446ef057730b074a3f796920de8f458e
|
3 |
-
size 62437882
|
|
|
|
|
|
|
|
checkpoint-200/rng_state.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:754a649249169df5413cd1afec214b0e512a562b2d537b50c7822a329e86ab92
|
3 |
-
size 14244
|
|
|
|
|
|
|
|
checkpoint-200/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ca49ceb5308a589ec72593fdfc170ba0798f7206328f597dc676a71ad4f62985
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
checkpoint-200/special_tokens_map.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
{
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"content": "<|observation|>",
|
12 |
-
"lstrip": false,
|
13 |
-
"normalized": false,
|
14 |
-
"rstrip": false,
|
15 |
-
"single_word": false
|
16 |
-
}
|
17 |
-
]
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/tokenization_chatglm.py
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from typing import List, Optional, Union, Dict
|
5 |
-
from sentencepiece import SentencePieceProcessor
|
6 |
-
from transformers import PreTrainedTokenizer
|
7 |
-
from transformers.utils import logging, PaddingStrategy
|
8 |
-
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
-
|
10 |
-
|
11 |
-
class SPTokenizer:
|
12 |
-
def __init__(self, model_path: str):
|
13 |
-
# reload tokenizer
|
14 |
-
assert os.path.isfile(model_path), model_path
|
15 |
-
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
-
|
17 |
-
# BOS / EOS token IDs
|
18 |
-
self.n_words: int = self.sp_model.vocab_size()
|
19 |
-
self.bos_id: int = self.sp_model.bos_id()
|
20 |
-
self.eos_id: int = self.sp_model.eos_id()
|
21 |
-
self.pad_id: int = self.sp_model.unk_id()
|
22 |
-
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
-
|
24 |
-
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
-
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
-
self.special_tokens = {}
|
27 |
-
self.index_special_tokens = {}
|
28 |
-
for token in special_tokens:
|
29 |
-
self.special_tokens[token] = self.n_words
|
30 |
-
self.index_special_tokens[self.n_words] = token
|
31 |
-
self.n_words += 1
|
32 |
-
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
-
|
34 |
-
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
-
if encode_special_tokens:
|
36 |
-
last_index = 0
|
37 |
-
t = []
|
38 |
-
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
-
if last_index < match.start():
|
40 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
-
t.append(s[match.start():match.end()])
|
42 |
-
last_index = match.end()
|
43 |
-
if last_index < len(s):
|
44 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
-
return t
|
46 |
-
else:
|
47 |
-
return self.sp_model.EncodeAsPieces(s)
|
48 |
-
|
49 |
-
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
-
assert type(s) is str
|
51 |
-
t = self.sp_model.encode(s)
|
52 |
-
if bos:
|
53 |
-
t = [self.bos_id] + t
|
54 |
-
if eos:
|
55 |
-
t = t + [self.eos_id]
|
56 |
-
return t
|
57 |
-
|
58 |
-
def decode(self, t: List[int]) -> str:
|
59 |
-
text, buffer = "", []
|
60 |
-
for token in t:
|
61 |
-
if token in self.index_special_tokens:
|
62 |
-
if buffer:
|
63 |
-
text += self.sp_model.decode(buffer)
|
64 |
-
buffer = []
|
65 |
-
text += self.index_special_tokens[token]
|
66 |
-
else:
|
67 |
-
buffer.append(token)
|
68 |
-
if buffer:
|
69 |
-
text += self.sp_model.decode(buffer)
|
70 |
-
return text
|
71 |
-
|
72 |
-
def decode_tokens(self, tokens: List[str]) -> str:
|
73 |
-
text = self.sp_model.DecodePieces(tokens)
|
74 |
-
return text
|
75 |
-
|
76 |
-
def convert_token_to_id(self, token):
|
77 |
-
""" Converts a token (str) in an id using the vocab. """
|
78 |
-
if token in self.special_tokens:
|
79 |
-
return self.special_tokens[token]
|
80 |
-
return self.sp_model.PieceToId(token)
|
81 |
-
|
82 |
-
def convert_id_to_token(self, index):
|
83 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
84 |
-
if index in self.index_special_tokens:
|
85 |
-
return self.index_special_tokens[index]
|
86 |
-
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
87 |
-
return ""
|
88 |
-
return self.sp_model.IdToPiece(index)
|
89 |
-
|
90 |
-
|
91 |
-
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
-
|
94 |
-
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
-
|
96 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
-
**kwargs):
|
98 |
-
self.name = "GLMTokenizer"
|
99 |
-
|
100 |
-
self.vocab_file = vocab_file
|
101 |
-
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
-
self.special_tokens = {
|
103 |
-
"<bos>": self.tokenizer.bos_id,
|
104 |
-
"<eos>": self.tokenizer.eos_id,
|
105 |
-
"<pad>": self.tokenizer.pad_id
|
106 |
-
}
|
107 |
-
self.encode_special_tokens = encode_special_tokens
|
108 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
-
encode_special_tokens=encode_special_tokens,
|
110 |
-
**kwargs)
|
111 |
-
|
112 |
-
def get_command(self, token):
|
113 |
-
if token in self.special_tokens:
|
114 |
-
return self.special_tokens[token]
|
115 |
-
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
116 |
-
return self.tokenizer.special_tokens[token]
|
117 |
-
|
118 |
-
@property
|
119 |
-
def unk_token(self) -> str:
|
120 |
-
return "<unk>"
|
121 |
-
|
122 |
-
@property
|
123 |
-
def pad_token(self) -> str:
|
124 |
-
return "<unk>"
|
125 |
-
|
126 |
-
@property
|
127 |
-
def pad_token_id(self):
|
128 |
-
return self.get_command("<pad>")
|
129 |
-
|
130 |
-
@property
|
131 |
-
def eos_token(self) -> str:
|
132 |
-
return "</s>"
|
133 |
-
|
134 |
-
@property
|
135 |
-
def eos_token_id(self):
|
136 |
-
return self.get_command("<eos>")
|
137 |
-
|
138 |
-
@property
|
139 |
-
def vocab_size(self):
|
140 |
-
return self.tokenizer.n_words
|
141 |
-
|
142 |
-
def get_vocab(self):
|
143 |
-
""" Returns vocab as a dict """
|
144 |
-
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
145 |
-
vocab.update(self.added_tokens_encoder)
|
146 |
-
return vocab
|
147 |
-
|
148 |
-
def _tokenize(self, text, **kwargs):
|
149 |
-
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
-
|
151 |
-
def _convert_token_to_id(self, token):
|
152 |
-
""" Converts a token (str) in an id using the vocab. """
|
153 |
-
return self.tokenizer.convert_token_to_id(token)
|
154 |
-
|
155 |
-
def _convert_id_to_token(self, index):
|
156 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
157 |
-
return self.tokenizer.convert_id_to_token(index)
|
158 |
-
|
159 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
160 |
-
return self.tokenizer.decode_tokens(tokens)
|
161 |
-
|
162 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
163 |
-
"""
|
164 |
-
Save the vocabulary and special tokens file to a directory.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
save_directory (`str`):
|
168 |
-
The directory in which to save the vocabulary.
|
169 |
-
filename_prefix (`str`, *optional*):
|
170 |
-
An optional prefix to add to the named of the saved files.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
if os.path.isdir(save_directory):
|
176 |
-
vocab_file = os.path.join(
|
177 |
-
save_directory, self.vocab_files_names["vocab_file"]
|
178 |
-
)
|
179 |
-
else:
|
180 |
-
vocab_file = save_directory
|
181 |
-
|
182 |
-
with open(self.vocab_file, 'rb') as fin:
|
183 |
-
proto_str = fin.read()
|
184 |
-
|
185 |
-
with open(vocab_file, "wb") as writer:
|
186 |
-
writer.write(proto_str)
|
187 |
-
|
188 |
-
return (vocab_file,)
|
189 |
-
|
190 |
-
def get_prefix_tokens(self):
|
191 |
-
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
192 |
-
return prefix_tokens
|
193 |
-
|
194 |
-
def build_single_message(self, role, metadata, message):
|
195 |
-
assert role in ["system", "user", "assistant", "observation"], role
|
196 |
-
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
197 |
-
message_tokens = self.tokenizer.encode(message)
|
198 |
-
tokens = role_tokens + message_tokens
|
199 |
-
return tokens
|
200 |
-
|
201 |
-
def build_chat_input(self, query, history=None, role="user"):
|
202 |
-
if history is None:
|
203 |
-
history = []
|
204 |
-
input_ids = []
|
205 |
-
for item in history:
|
206 |
-
content = item["content"]
|
207 |
-
if item["role"] == "system" and "tools" in item:
|
208 |
-
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
209 |
-
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
210 |
-
input_ids.extend(self.build_single_message(role, "", query))
|
211 |
-
input_ids.extend([self.get_command("<|assistant|>")])
|
212 |
-
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
-
|
214 |
-
def build_inputs_with_special_tokens(
|
215 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
-
) -> List[int]:
|
217 |
-
"""
|
218 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
-
adding special tokens. A BERT sequence has the following format:
|
220 |
-
|
221 |
-
- single sequence: `[CLS] X [SEP]`
|
222 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
223 |
-
|
224 |
-
Args:
|
225 |
-
token_ids_0 (`List[int]`):
|
226 |
-
List of IDs to which the special tokens will be added.
|
227 |
-
token_ids_1 (`List[int]`, *optional*):
|
228 |
-
Optional second list of IDs for sequence pairs.
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
-
"""
|
233 |
-
prefix_tokens = self.get_prefix_tokens()
|
234 |
-
token_ids_0 = prefix_tokens + token_ids_0
|
235 |
-
if token_ids_1 is not None:
|
236 |
-
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
237 |
-
return token_ids_0
|
238 |
-
|
239 |
-
def _pad(
|
240 |
-
self,
|
241 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
242 |
-
max_length: Optional[int] = None,
|
243 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
244 |
-
pad_to_multiple_of: Optional[int] = None,
|
245 |
-
return_attention_mask: Optional[bool] = None,
|
246 |
-
) -> dict:
|
247 |
-
"""
|
248 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
249 |
-
|
250 |
-
Args:
|
251 |
-
encoded_inputs:
|
252 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
253 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
254 |
-
Will truncate by taking into account the special tokens.
|
255 |
-
padding_strategy: PaddingStrategy to use for padding.
|
256 |
-
|
257 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
258 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
259 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
260 |
-
The tokenizer padding sides are defined in self.padding_side:
|
261 |
-
|
262 |
-
- 'left': pads on the left of the sequences
|
263 |
-
- 'right': pads on the right of the sequences
|
264 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
265 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
266 |
-
`>= 7.5` (Volta).
|
267 |
-
return_attention_mask:
|
268 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
269 |
-
"""
|
270 |
-
# Load from model defaults
|
271 |
-
assert self.padding_side == "left"
|
272 |
-
|
273 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
274 |
-
seq_length = len(required_input)
|
275 |
-
|
276 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
277 |
-
max_length = len(required_input)
|
278 |
-
|
279 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
280 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
281 |
-
|
282 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
283 |
-
|
284 |
-
# Initialize attention mask if not present.
|
285 |
-
if "attention_mask" not in encoded_inputs:
|
286 |
-
encoded_inputs["attention_mask"] = [1] * seq_length
|
287 |
-
|
288 |
-
if "position_ids" not in encoded_inputs:
|
289 |
-
encoded_inputs["position_ids"] = list(range(seq_length))
|
290 |
-
|
291 |
-
if needs_to_be_padded:
|
292 |
-
difference = max_length - len(required_input)
|
293 |
-
|
294 |
-
if "attention_mask" in encoded_inputs:
|
295 |
-
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
296 |
-
if "position_ids" in encoded_inputs:
|
297 |
-
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
298 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
-
|
300 |
-
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
-
size 1018370
|
|
|
|
|
|
|
|
checkpoint-200/tokenizer_config.json
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"64795": {
|
4 |
-
"content": "<|user|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"64797": {
|
12 |
-
"content": "<|observation|>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"additional_special_tokens": [
|
21 |
-
"<|user|>",
|
22 |
-
"<|observation|>"
|
23 |
-
],
|
24 |
-
"auto_map": {
|
25 |
-
"AutoTokenizer": [
|
26 |
-
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
-
null
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"clean_up_tokenization_spaces": false,
|
31 |
-
"do_lower_case": false,
|
32 |
-
"encode_special_tokens": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"model_max_length": 1000000000000000019884624838656,
|
35 |
-
"pad_token": "<unk>",
|
36 |
-
"padding_side": "right",
|
37 |
-
"remove_space": false,
|
38 |
-
"split_special_tokens": false,
|
39 |
-
"tokenizer_class": "ChatGLMTokenizer",
|
40 |
-
"unk_token": "<unk>"
|
41 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/trainer_state.json
DELETED
@@ -1,261 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 4.545454545454545,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 200,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.11,
|
13 |
-
"learning_rate": 0.001999898043009433,
|
14 |
-
"loss": 4.5094,
|
15 |
-
"step": 5
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"epoch": 0.23,
|
19 |
-
"learning_rate": 0.0019995921928281893,
|
20 |
-
"loss": 3.8047,
|
21 |
-
"step": 10
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"epoch": 0.34,
|
25 |
-
"learning_rate": 0.001999082511823396,
|
26 |
-
"loss": 3.8813,
|
27 |
-
"step": 15
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"epoch": 0.45,
|
31 |
-
"learning_rate": 0.0019983691039261358,
|
32 |
-
"loss": 3.7188,
|
33 |
-
"step": 20
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"epoch": 0.57,
|
37 |
-
"learning_rate": 0.0019974521146102534,
|
38 |
-
"loss": 3.6695,
|
39 |
-
"step": 25
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"epoch": 0.68,
|
43 |
-
"learning_rate": 0.001996331730862691,
|
44 |
-
"loss": 3.7078,
|
45 |
-
"step": 30
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 0.8,
|
49 |
-
"learning_rate": 0.0019950081811453595,
|
50 |
-
"loss": 3.6844,
|
51 |
-
"step": 35
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.91,
|
55 |
-
"learning_rate": 0.0019934817353485504,
|
56 |
-
"loss": 3.6961,
|
57 |
-
"step": 40
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"epoch": 1.02,
|
61 |
-
"learning_rate": 0.0019917527047359027,
|
62 |
-
"loss": 3.5758,
|
63 |
-
"step": 45
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"epoch": 1.14,
|
67 |
-
"learning_rate": 0.001989821441880933,
|
68 |
-
"loss": 3.4102,
|
69 |
-
"step": 50
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"epoch": 1.25,
|
73 |
-
"learning_rate": 0.0019876883405951376,
|
74 |
-
"loss": 3.3984,
|
75 |
-
"step": 55
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"epoch": 1.36,
|
79 |
-
"learning_rate": 0.001985353835847693,
|
80 |
-
"loss": 3.3602,
|
81 |
-
"step": 60
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"epoch": 1.48,
|
85 |
-
"learning_rate": 0.0019828184036767556,
|
86 |
-
"loss": 3.4461,
|
87 |
-
"step": 65
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"epoch": 1.59,
|
91 |
-
"learning_rate": 0.0019800825610923932,
|
92 |
-
"loss": 3.3461,
|
93 |
-
"step": 70
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 1.7,
|
97 |
-
"learning_rate": 0.0019771468659711597,
|
98 |
-
"loss": 3.4172,
|
99 |
-
"step": 75
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"epoch": 1.82,
|
103 |
-
"learning_rate": 0.0019740119169423336,
|
104 |
-
"loss": 3.4359,
|
105 |
-
"step": 80
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"epoch": 1.93,
|
109 |
-
"learning_rate": 0.0019706783532658523,
|
110 |
-
"loss": 3.5141,
|
111 |
-
"step": 85
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"epoch": 2.05,
|
115 |
-
"learning_rate": 0.001967146854701957,
|
116 |
-
"loss": 3.2242,
|
117 |
-
"step": 90
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"epoch": 2.16,
|
121 |
-
"learning_rate": 0.0019634181413725788,
|
122 |
-
"loss": 3.0227,
|
123 |
-
"step": 95
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"epoch": 2.27,
|
127 |
-
"learning_rate": 0.0019594929736144974,
|
128 |
-
"loss": 2.8984,
|
129 |
-
"step": 100
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"epoch": 2.39,
|
133 |
-
"learning_rate": 0.001955372151824297,
|
134 |
-
"loss": 3.0781,
|
135 |
-
"step": 105
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"epoch": 2.5,
|
139 |
-
"learning_rate": 0.0019510565162951536,
|
140 |
-
"loss": 3.1203,
|
141 |
-
"step": 110
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"epoch": 2.61,
|
145 |
-
"learning_rate": 0.00194654694704549,
|
146 |
-
"loss": 3.1828,
|
147 |
-
"step": 115
|
148 |
-
},
|
149 |
-
{
|
150 |
-
"epoch": 2.73,
|
151 |
-
"learning_rate": 0.0019418443636395248,
|
152 |
-
"loss": 3.0531,
|
153 |
-
"step": 120
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"epoch": 2.84,
|
157 |
-
"learning_rate": 0.001936949724999762,
|
158 |
-
"loss": 3.1523,
|
159 |
-
"step": 125
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"epoch": 2.95,
|
163 |
-
"learning_rate": 0.0019318640292114524,
|
164 |
-
"loss": 3.1156,
|
165 |
-
"step": 130
|
166 |
-
},
|
167 |
-
{
|
168 |
-
"epoch": 3.07,
|
169 |
-
"learning_rate": 0.0019265883133190713,
|
170 |
-
"loss": 2.7844,
|
171 |
-
"step": 135
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"epoch": 3.18,
|
175 |
-
"learning_rate": 0.0019211236531148502,
|
176 |
-
"loss": 2.6711,
|
177 |
-
"step": 140
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"epoch": 3.3,
|
181 |
-
"learning_rate": 0.0019154711629194062,
|
182 |
-
"loss": 2.6609,
|
183 |
-
"step": 145
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"epoch": 3.41,
|
187 |
-
"learning_rate": 0.0019096319953545184,
|
188 |
-
"loss": 2.7531,
|
189 |
-
"step": 150
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"epoch": 3.52,
|
193 |
-
"learning_rate": 0.0019036073411080917,
|
194 |
-
"loss": 2.7977,
|
195 |
-
"step": 155
|
196 |
-
},
|
197 |
-
{
|
198 |
-
"epoch": 3.64,
|
199 |
-
"learning_rate": 0.0018973984286913585,
|
200 |
-
"loss": 2.7914,
|
201 |
-
"step": 160
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"epoch": 3.75,
|
205 |
-
"learning_rate": 0.0018910065241883678,
|
206 |
-
"loss": 2.8188,
|
207 |
-
"step": 165
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"epoch": 3.86,
|
211 |
-
"learning_rate": 0.0018844329309978143,
|
212 |
-
"loss": 2.8945,
|
213 |
-
"step": 170
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"epoch": 3.98,
|
217 |
-
"learning_rate": 0.0018776789895672556,
|
218 |
-
"loss": 2.8883,
|
219 |
-
"step": 175
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"epoch": 4.09,
|
223 |
-
"learning_rate": 0.0018707460771197773,
|
224 |
-
"loss": 2.4617,
|
225 |
-
"step": 180
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"epoch": 4.2,
|
229 |
-
"learning_rate": 0.001863635607373157,
|
230 |
-
"loss": 2.4633,
|
231 |
-
"step": 185
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"epoch": 4.32,
|
235 |
-
"learning_rate": 0.001856349030251589,
|
236 |
-
"loss": 2.5094,
|
237 |
-
"step": 190
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"epoch": 4.43,
|
241 |
-
"learning_rate": 0.0018488878315900226,
|
242 |
-
"loss": 2.432,
|
243 |
-
"step": 195
|
244 |
-
},
|
245 |
-
{
|
246 |
-
"epoch": 4.55,
|
247 |
-
"learning_rate": 0.0018412535328311812,
|
248 |
-
"loss": 2.5648,
|
249 |
-
"step": 200
|
250 |
-
}
|
251 |
-
],
|
252 |
-
"logging_steps": 5,
|
253 |
-
"max_steps": 1100,
|
254 |
-
"num_input_tokens_seen": 0,
|
255 |
-
"num_train_epochs": 25,
|
256 |
-
"save_steps": 100,
|
257 |
-
"total_flos": 1.0268727547723776e+17,
|
258 |
-
"train_batch_size": 4,
|
259 |
-
"trial_name": null,
|
260 |
-
"trial_params": null
|
261 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-200/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fef6a3ae006ec4c51dbcf0a3e569288ca5ab1bbc97f41768934c32153b03277c
|
3 |
-
size 4920
|
|
|
|
|
|
|
|