zhendch commited on
Commit
c839d1a
·
verified ·
1 Parent(s): 74cbe24
Files changed (1) hide show
  1. README.md +179 -3
README.md CHANGED
@@ -1,3 +1,179 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression <br><sub>Official PyTorch Implementation</sub>
2
+
3
+ [![arXiv](https://img.shields.io/badge/arXiv%20paper-2506.09482-b31b1b.svg)](https://arxiv.org/pdf/2506.09482)&nbsp;
4
+ [![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-TransDiff-yellow)](https://huggingface.co/zhendch/Transdiff)&nbsp;
5
+
6
+
7
+ <p align="center">
8
+ <img src="figs/visual.png" width="720">
9
+ </p>
10
+
11
+ This is a PyTorch/GPU implementation of the paper [Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression](https://arxiv.org/pdf/2506.09482):
12
+
13
+ ```
14
+ @article{zhen2025marrying,
15
+ title={Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression},
16
+ author={Zhen, Dingcheng and Qiao, Qian and Yu, Tan and Wu, Kangxi and Zhang, Ziwei and Liu, Siyuan and Yin, Shunshun and Tao, Ming},
17
+ journal={arXiv preprint arXiv:2506.09482},
18
+ year={2025}
19
+ }
20
+ ```
21
+
22
+ This repo contains:
23
+
24
+ * 🪐 A simple PyTorch implementation of [TransDiff Model](models/transdiff.py) and [TransDiff Model with MRAR](models/transdiff_mrar.py)
25
+ * ⚡️ Pre-trained class-conditional TransDiff models trained on ImageNet 256x256 and 512x512
26
+ * 💥 A self-contained [notebook](demo.ipynb) for running various pre-trained TransDiff models
27
+ * 🛸 An TransDiff [training and evaluation script](main.py) using PyTorch DDP
28
+
29
+ ## Preparation
30
+
31
+ ### Dataset
32
+ Download [ImageNet](http://image-net.org/download) dataset, and place it in your `IMAGENET_PATH`.
33
+
34
+ ### VAE Model
35
+ We adopt the VAE model from [MAR](https://github.com/LTH14/mar) , you can also get it [here](https://huggingface.co/zhendch/Transdiff/resolve/main/vae/checkpoint-last.pth?download=true).
36
+ ### Installation
37
+
38
+ Download the code:
39
+ ```
40
+ git clone https://github.com/TransDiff/TransDiff
41
+ cd TransDiff
42
+ ```
43
+
44
+ A suitable [conda](https://conda.io/) environment named `transdiff` can be created and activated with:
45
+
46
+ ```
47
+ conda env create -f environment.yaml
48
+ conda activate transdiff
49
+ ```
50
+
51
+ For convenience, our pre-trained TransDiff models can be downloaded directly here as well:
52
+
53
+ | TransDiff Model | FID-50K | Inception Score | #params |
54
+ |--------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|
55
+ | [TransDiff-B](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_b/checkpoint-last.pth?download=true) | 2.47 | 244.2 | 290M |
56
+ | [TransDiff-L](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l/checkpoint-last.pth?download=true) | 2.25 | 244.3 | 683M |
57
+ | [TransDiff-H](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_h/checkpoint-last.pth?download=true) | 1.69 | 282.0 | 1.3B |
58
+ | [TransDiff-B MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_b_mrar/checkpoint-last.pth?download=true) | 1.49 | 282.2 | 290M |
59
+ | [TransDiff-L MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l_mrar/checkpoint-last.pth?download=true) | 1.61 | 293.4 | 683M |
60
+ | [TransDiff-H MRAR](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_h_mrar/checkpoint-last.pth?download=true) | 1.42 | 301.2 | 1.3B |
61
+ | [TransDiff-L 512x512](https://huggingface.co/zhendch/Transdiff/resolve/main/transdiff_l_512/checkpoint-last.pth?download=true) | 2.51 | 286.6 | 683M |
62
+
63
+ ### (Optional) Download Other Files
64
+ Download necessary [file](https://huggingface.co/zhendch/Transdiff/resolve/main/VIRTUAL_imagenet512.npz?download=true) and put it into folder `fid_stats/`, if you want to run evaluation on ImageNet 512x512.
65
+ Download [MRAR index file](https://huggingface.co/zhendch/Transdiff/resolve/main/Imagenet2012_mrar_files.txt?download=true) and put it into root of project, if you want to train TransDiff with MRAR.
66
+
67
+ ### (Optional) Caching VAE Latents
68
+
69
+ Given that our data augmentation consists of simple center cropping and random flipping,
70
+ the VAE latents can be pre-computed and saved to `CACHED_PATH` to save computations during TransDiff training:
71
+
72
+ ```
73
+ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
74
+ main_cache.py \
75
+ --img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 \
76
+ --batch_size 128 \
77
+ --data_path ${IMAGENET_PATH} --cached_path ${CACHED_PATH}
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Demo
83
+ Run our interactive visualization [demo](demo.ipynb).
84
+
85
+ ### Training
86
+ Script for the TransDiff-L 1StepAR setting (Pretrain TransDiff-L with a width of 1024 channels, 800 epochs):
87
+ ```
88
+ torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
89
+ main.py \
90
+ --img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
91
+ --model transdiff_large --diffloss_w 1024 \
92
+ --diffusion_batch_mul 4 \
93
+ --epochs 800 --warmup_epochs 100 --blr 1.0e-4 --batch_size 32 \
94
+ --output_dir ${OUTPUT_DIR} --resume ${OUTPUT_DIR} \
95
+ --data_path ${IMAGENET_PATH}
96
+ ```
97
+ - Training time is ~115h on 64 A100 GPUs with `--batch_size 32`.
98
+ - Add `--online_eval` to evaluate FID during training (every 50 epochs).
99
+ - (Optional) To train with cached VAE latents, add `--use_cached --cached_path ${CACHED_PATH}` to the arguments.
100
+ - (Optional) If the error 'Loss is nan, stopping training' frequently occurs during training when using mixed precision training with 'torch.cuda.amp.autocast()', you can add `--bf16` to the arguments.
101
+ - (Optional) If necessary, you can use gradient accumulation by setting `--gradient_accumulation_steps n`.
102
+
103
+ Script for the TransDiff-L MRAR setting (Finetune TransDiff-L MRAR with a width of 1024 channels, 40 epochs):
104
+ ```
105
+ torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
106
+ main.py \
107
+ --img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
108
+ --model transdiff_large --diffloss_w 1024 --mrar --bf16 \
109
+ --diffusion_batch_mul 2 \
110
+ --epochs 40 --warmup_epochs 10 --lr 5.0e-5 --batch_size 16 --gradient_accumulation_steps 2 \
111
+ --output_dir ${OUTPUT_DIR} --resume ${Transdiff-L_1StepAR_DIR} \
112
+ --data_path ${IMAGENET_PATH}
113
+ ```
114
+ Script for the TransDiff-L 512x512 setting (Finetune TransDiff-L 512x512 with a width of 1024 channels, 150 epochs):
115
+ ```
116
+ torchrun --nproc_per_node=8 --nnodes=8 --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
117
+ main.py \
118
+ --img_size 512 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
119
+ --model transdiff_large --diffloss_w 1024 --ema_rate 0.999 --bf16 \
120
+ --diffusion_batch_mul 4 \
121
+ --epochs 150 --warmup_epochs 10 --lr 1.0e-4 --batch_size 16 --gradient_accumulation_steps 2 \
122
+ --only_train_diff \
123
+ --output_dir ${OUTPUT_DIR} --resume ${Transdiff-L_1StepAR_DIR} \
124
+ --data_path ${IMAGENET_PATH}
125
+ ```
126
+
127
+ ### Evaluation (ImageNet 256x256 and 512x512)
128
+
129
+ Evaluate TransDiff-L 1StepAR with classifier-free guidance:
130
+ ```
131
+ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
132
+ main.py \
133
+ --img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
134
+ --model transdiff_large --diffloss_w 1024 \
135
+ --output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l/ \
136
+ --evaluate --eval_bsz 256 --num_images 50000 \
137
+ --cfg 1.3 --scale_0 0.89 --scale_1 0.95
138
+ ```
139
+
140
+ Evaluate TransDiff-L MRAR with classifier-free guidance:
141
+ ```
142
+ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
143
+ main.py \
144
+ --img_size 256 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
145
+ --model transdiff_large --diffloss_w 1024 \
146
+ --output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l_mrar/ \
147
+ --evaluate --eval_bsz 256 --num_images 50000 \
148
+ --cfg 1.3 --scale_0 0.91 --scale_1 0.93
149
+ ```
150
+
151
+ Evaluate TransDiff-L 512x512 with classifier-free guidance:
152
+ ```
153
+ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 \
154
+ main.py \
155
+ --img_size 512 --vae_path ckpt/vae/kl16.ckpt --vae_embed_dim 16 --patch_size 1 \
156
+ --model transdiff_large --diffloss_w 1024 \
157
+ --output_dir ${OUTPUT_DIR} --resume ckpt/transdiff_l_512/ \
158
+ --evaluate --eval_bsz 64 --num_images 50000 \
159
+ --cfg 1.3 --scale_0 0.87 --scale_1 0.87
160
+ ```
161
+
162
+ More settings for Benchmark in paper:
163
+
164
+ | TransDiff Model | cfg | scale_0 | scale_1 |
165
+ |---------------------|------|---------|---------|
166
+ | TransDiff-B | 1.30 | 0.87 | 0.91 |
167
+ | TransDiff-L | 1.30 | 0.89 | 0.95 |
168
+ | TransDiff-H | 1.23 | 0.87 | 0.93 |
169
+ | TransDiff-B MRAR | 1.30 | 0.87 | 0.91 |
170
+ | TransDiff-L MRAR | 1.30 | 0.91 | 0.93 |
171
+ | TransDiff-H MRAR | 1.28 | 0.87 | 0.91 |
172
+ | TransDiff-L 512x512 | 1.30 | 0.87 | 0.87 |
173
+
174
+ ## Acknowledgements
175
+ A large portion of codes in this repo is based on [MAR](https://github.com/LTH14/mar), [diffusers](https://github.com/huggingface/diffusers) and [timm](https://github.com/huggingface/pytorch-image-models).
176
+
177
+ ## Contact
178
+
179
+ If you have any questions, feel free to contact me through email ([email protected]). Enjoy!