File size: 10,926 Bytes
2e04998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import torch
from torch_utils import training_stats
from torch_utils import misc
from torch_utils.ops import conv2d_gradfix

from training.adaaug import AdaAugment

#----------------------------------------------------------------------------

class Loss:
    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain): # to be overridden by subclass
        raise NotImplementedError()

#----------------------------------------------------------------------------

class StyleGAN2LossCL(Loss):
    def __init__(self, device, G_mapping, G_synthesis, D, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2):
        super().__init__()
        self.device = device
        self.G_mapping = G_mapping
        self.G_synthesis = G_synthesis
        self.D = D
        self.augment_pipe = augment_pipe
        self.style_mixing_prob = style_mixing_prob
        self.r1_gamma = r1_gamma
        self.pl_batch_shrink = pl_batch_shrink
        self.pl_decay = pl_decay
        self.pl_weight = pl_weight
        self.pl_mean = torch.zeros([], device=device)
        self.image_disturb = AdaAugment(p=0.2).to(device)

    def run_G(self, z, c, sync):
        with misc.ddp_sync(self.G_mapping, sync):
            ws = self.G_mapping(z, c)
            if self.style_mixing_prob > 0:
                with torch.autograd.profiler.record_function('style_mixing'):
                    cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                    cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                    ws[:, cutoff:] = self.G_mapping(torch.randn_like(z), c, skip_w_avg_update=True)[:, cutoff:]
        with misc.ddp_sync(self.G_synthesis, sync):
            img = self.G_synthesis(ws)
        return img, ws

    def run_D(self, img, c, sync):
        if self.augment_pipe is not None:
            img, t = self.augment_pipe(img)
        with misc.ddp_sync(self.D, sync):
            logits = self.D(img, c, t)
        return logits

    def run_cl(self, img, c, sync, contrastive_head, D_ema, loss_name='', loss_only=False, img1=None, update_q=False):
        # contrastive loss fwd 

        # augmentation first via ada-aug
        # assert(self.augment_pipe is not None)
        img0 = self.image_disturb(img)
        img1 = self.image_disturb(img) if img1 is None else self.image_disturb(img1)
        batch_size, device = img.shape[0], img.device
        # img0 = img
        # img1 = img.clone() + torch.randn_like(img) * 0.02 if img1 is None else img1

        # extract features for two views via D and momentum D
        _, logits0 = self.D(img0, c, torch.zeros((batch_size, 1)).long().to(device), return_feats=True)
        with torch.no_grad():
            _, logits1 = D_ema(img1, c, torch.zeros((batch_size, 1)).long().to(device), return_feats=True)

        # project features into the unit sphere and calculate contrastive loss
        loss = contrastive_head(logits0, logits1, loss_only=loss_only, update_q=update_q)
        training_stats.report('Loss/'+loss_name, loss)
        return loss

    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain, cl_phases=None, D_ema=None, lw_real_cl=1.0, lw_fake_cl=1.0, lw_fake_cl_on_g=1.0, g_fake_cl=False):
        assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth']
        do_Gmain = (phase in ['Gmain', 'Gboth'])
        do_Dmain = (phase in ['Dmain', 'Dboth'])
        do_Gpl   = (phase in ['Greg', 'Gboth']) and (self.pl_weight != 0)
        do_Dr1   = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0)

        # Gmain: Maximize logits for generated images.
        if do_Gmain:
            with torch.autograd.profiler.record_function('Gmain_forward'):
                gen_img, _gen_ws = self.run_G(gen_z, gen_c, sync=(sync and not do_Gpl)) # May get synced by Gpl.
                gen_logits = self.run_D(gen_img, gen_c, sync=False)
                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Gmain = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits))
                training_stats.report('Loss/G/loss', loss_Gmain)

                # Diversity generation loss from fake instance discrimination
                if cl_phases.get('GHeadmain', None) is not None and g_fake_cl:
                    # when fake cl on g, no params in D encoder and head would be updated, including feature queue.
                    Gphase = cl_phases['GHeadmain']
                    Gphase.module.requires_grad_(False)
                    # fake_cl on g: gradients bp to generator
                    loss_Gmain = loss_Gmain + lw_fake_cl_on_g * self.run_cl(gen_img, gen_c, False, Gphase.module, D_ema, loss_name='G_cl_on_g', loss_only=True)

            with torch.autograd.profiler.record_function('Gmain_backward'):
                loss_Gmain.mean().mul(gain).backward()

            if cl_phases.get('GHeadmain', None) is not None and g_fake_cl:
                Gphase = cl_phases['GHeadmain']
                Gphase.module.requires_grad_(True)

        # Gpl: Apply path length regularization.
        if do_Gpl:
            with torch.autograd.profiler.record_function('Gpl_forward'):
                batch_size = gen_z.shape[0] // self.pl_batch_shrink
                gen_img, gen_ws = self.run_G(gen_z[:batch_size], gen_c[:batch_size], sync=sync)
                pl_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3])
                with torch.autograd.profiler.record_function('pl_grads'), conv2d_gradfix.no_weight_gradients():
                    pl_grads = torch.autograd.grad(outputs=[(gen_img * pl_noise).sum()], inputs=[gen_ws], create_graph=True, only_inputs=True)[0]
                pl_lengths = pl_grads.square().sum(2).mean(1).sqrt()
                pl_mean = self.pl_mean.lerp(pl_lengths.mean(), self.pl_decay)
                self.pl_mean.copy_(pl_mean.detach())
                pl_penalty = (pl_lengths - pl_mean).square()
                training_stats.report('Loss/pl_penalty', pl_penalty)
                loss_Gpl = pl_penalty * self.pl_weight
                training_stats.report('Loss/G/reg', loss_Gpl)
            with torch.autograd.profiler.record_function('Gpl_backward'):
                (gen_img[:, 0, 0, 0] * 0 + loss_Gpl).mean().mul(gain).backward()

        # Dmain: Minimize logits for generated images.
        loss_Dgen = 0
        if do_Dmain:
            with torch.autograd.profiler.record_function('Dgen_forward'):
                gen_img, _gen_ws = self.run_G(gen_z, gen_c, sync=False)
                gen_logits = self.run_D(gen_img, gen_c, sync=False) # Gets synced by loss_Dreal.
                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits))
            with torch.autograd.profiler.record_function('Dgen_backward'):
                loss_Dgen.mean().mul(gain).backward()

        # Dmain: Maximize logits for real images.
        # Dr1: Apply R1 regularization.
        if do_Dmain or do_Dr1:
            name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1'
            with torch.autograd.profiler.record_function(name + '_forward'):
                real_img_tmp = real_img.detach().requires_grad_(do_Dr1)
                real_logits = self.run_D(real_img_tmp, real_c, sync=sync)
                training_stats.report('Loss/scores/real', real_logits)
                training_stats.report('Loss/signs/real', real_logits.sign())

                loss_Dreal = 0
                if do_Dmain:
                    loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits))
                    training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)
                    # Contrastive loss would be added to the normal binary cls loss of D  
                    # real instance discrimination
                    if cl_phases.get('DHeadmain', None) is not None:
                        Dphase = cl_phases['DHeadmain']
                        Dphase.opt.zero_grad(set_to_none=True)
                        loss_Dreal = loss_Dreal + lw_real_cl * self.run_cl(real_img_tmp, real_c, sync, Dphase.module, D_ema, loss_name='D_cl')

                    # fake instance discrimination
                    if cl_phases.get('GHeadmain', None) is not None:
                        Gphase = cl_phases['GHeadmain'] 
                        Gphase.opt.zero_grad(set_to_none=True) 
                        # noisy perturbation
                        with torch.no_grad():
                            delta_z = torch.randn(gen_z.shape, device=gen_z.device) * 0.15
                            noisy_gen_img, _ = self.run_G(gen_z + delta_z, gen_c, sync=False)
                        loss_Dreal = loss_Dreal + lw_fake_cl * self.run_cl(gen_img, gen_c, False, Gphase.module, D_ema, loss_name='G_cl', img1=noisy_gen_img, update_q=True)

                loss_Dr1 = 0
                if do_Dr1:
                    with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
                        r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0]
                    r1_penalty = r1_grads.square().sum([1,2,3])
                    loss_Dr1 = r1_penalty * (self.r1_gamma / 2)
                    training_stats.report('Loss/r1_penalty', r1_penalty)
                    training_stats.report('Loss/D/reg', loss_Dr1)

            with torch.autograd.profiler.record_function(name + '_backward'):
                (real_logits * 0 + loss_Dreal + loss_Dr1).mean().mul(gain).backward()
            
            # after backward of contrastive loss together with the original loss of D, 
            # manually call optim.step() to update the parameters of contrative head
            if cl_phases.get('DHeadmain', None) is not None and do_Dmain:
                Dphase.opt.step()

            if cl_phases.get('GHeadmain', None) is not None and do_Dmain:
                Gphase.opt.step()

#----------------------------------------------------------------------------