File size: 5,529 Bytes
2e04998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import scipy.signal
import torch
from torch_utils import persistence
from torch_utils import misc
from torch_utils.ops import upfirdn2d
from torch_utils.ops import grid_sample_gradfix
from torch_utils.ops import conv2d_gradfix

#----------------------------------------------------------------------------
# Helpers for doing diffusion process.


def get_beta_schedule(beta_schedule, beta_start, beta_end, num_diffusion_timesteps):
    def sigmoid(x):
        return 1 / (np.exp(-x) + 1)

    def continuous_t_beta(t, T):
        b_max = 5.
        b_min = 0.1
        alpha = np.exp(-b_min / T - 0.5 * (b_max - b_min) * (2 * t - 1) / T ** 2)
        return 1 - alpha

    if beta_schedule == "continuous_t":
        betas = continuous_t_beta(np.arange(1, num_diffusion_timesteps+1), num_diffusion_timesteps)
    elif beta_schedule == "quad":
        betas = (
            np.linspace(
                beta_start ** 0.5,
                beta_end ** 0.5,
                num_diffusion_timesteps,
                dtype=np.float64,
            )
            ** 2
        )
    elif beta_schedule == "linear":
        betas = np.linspace(
            beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
        )
    elif beta_schedule == "const":
        betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
    elif beta_schedule == "jsd":  # 1/T, 1/(T-1), 1/(T-2), ..., 1
        betas = 1.0 / np.linspace(
            num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
        )
    elif beta_schedule == "sigmoid":
        betas = np.linspace(-6, 6, num_diffusion_timesteps)
        betas = sigmoid(betas) * (beta_end - beta_start) + beta_start
    else:
        raise NotImplementedError(beta_schedule)
    assert betas.shape == (num_diffusion_timesteps,)
    return betas


def q_sample(x_0, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, t, noise_type='gauss', noise_std=1.0):
    batch_size, num_channels, _, _ = x_0.shape
    if noise_type == 'gauss':
        noise = torch.randn_like(x_0, device=x_0.device) * noise_std
    elif noise_type == 'bernoulli':
        noise = (torch.bernoulli(torch.ones_like(x_0) * 0.5) * 2 - 1.) * noise_std
    else:
        raise NotImplementedError(noise_type)
    alphas_t_sqrt = alphas_bar_sqrt[t].view(batch_size, num_channels, 1, 1)
    one_minus_alphas_bar_t_sqrt = one_minus_alphas_bar_sqrt[t].view(batch_size, num_channels, 1, 1)
    x_t = alphas_t_sqrt * x_0 + one_minus_alphas_bar_t_sqrt * noise
    return x_t


@persistence.persistent_class
class Diffusion(torch.nn.Module):
    def __init__(self,
        beta_schedule='linear', beta_start=1e-4, beta_end=1e-2,
        t_min=5, t_max=500, noise_std=0.5,
    ):
        super().__init__()
        self.p = 0.0       # Overall multiplier for augmentation probability.
        self.noise_type = self.base_noise_type = 'gauss'
        self.base_schedule = beta_schedule
        self.beta_start = beta_start
        self.beta_end = beta_end
        self.t_min = t_min
        self.t_max = t_max
        self.t_add = t_max - t_min
        self.update_T()

        # Image-space corruptions.
        self.noise_std = float(noise_std)        # Standard deviation of additive RGB noise.

    def set_diffusion_process(self, t, beta_schedule):

        betas = get_beta_schedule(
            beta_schedule=beta_schedule,
            beta_start=self.beta_start,
            beta_end=self.beta_end,
            num_diffusion_timesteps=t,
        )

        betas = self.betas = torch.from_numpy(betas).float()
        self.num_timesteps = betas.shape[0]

        alphas = self.alphas = 1.0 - betas
        alphas_cumprod = torch.cat([torch.tensor([1.]), alphas.cumprod(dim=0)])
        self.alphas_bar_sqrt = torch.sqrt(alphas_cumprod)
        self.one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_cumprod)

    def update_T(self):
        t_adjust = round(self.p * self.t_add)
        t = np.clip(int(self.t_min + t_adjust), a_min=self.t_min, a_max=self.t_max)
        self.set_diffusion_process(t, "linear")

        # sampling t
        self.t_epl = np.zeros(64, dtype=np.int)
        diffusion_ind = min(round(self.p * 64), 48)  # 48
        prob_t = np.arange(t) / np.arange(t).sum()
        t_diffusion = np.random.choice(np.arange(1, t+1), size=diffusion_ind, p=prob_t)
        self.t_epl[:diffusion_ind] = t_diffusion

    def forward(self, x_0, noise_std=1.0):
        assert isinstance(x_0, torch.Tensor) and x_0.ndim == 4
        batch_size, num_channels, height, width = x_0.shape
        device = x_0.device

        alphas_bar_sqrt = self.alphas_bar_sqrt.to(device)
        one_minus_alphas_bar_sqrt = self.one_minus_alphas_bar_sqrt.to(device)

        t = torch.from_numpy(np.random.choice(self.t_epl, size=batch_size * num_channels, replace=True)).to(device)

        x_t = q_sample(x_0, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, t,
                       noise_type=self.noise_type,
                       noise_std=noise_std)
        return x_t

#----------------------------------------------------------------------------