# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate lerp videos using pretrained network pickle.""" import copy import os import re from typing import List, Optional, Tuple, Union import click import dnnlib import imageio import numpy as np import scipy.interpolate import torch from tqdm import tqdm import legacy #---------------------------------------------------------------------------- def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True): batch_size, channels, img_h, img_w = img.shape if grid_w is None: grid_w = batch_size // grid_h assert batch_size == grid_w * grid_h if float_to_uint8: img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) img = img.reshape(grid_h, grid_w, channels, img_h, img_w) img = img.permute(2, 0, 3, 1, 4) img = img.reshape(channels, grid_h * img_h, grid_w * img_w) if chw_to_hwc: img = img.permute(1, 2, 0) if to_numpy: img = img.cpu().numpy() return img #---------------------------------------------------------------------------- def gen_interp_video(G, mp4: str, seeds, shuffle_seed=None, w_frames=60*4, kind='cubic', grid_dims=(1,1), num_keyframes=None, wraps=2, psi=1, device=torch.device('cuda'), class_idx=None, **video_kwargs): grid_w = grid_dims[0] grid_h = grid_dims[1] if num_keyframes is None: if len(seeds) % (grid_w*grid_h) != 0: raise ValueError('Number of input seeds must be divisible by grid W*H') num_keyframes = len(seeds) // (grid_w*grid_h) all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64) for idx in range(num_keyframes*grid_h*grid_w): all_seeds[idx] = seeds[idx % len(seeds)] if shuffle_seed is not None: rng = np.random.RandomState(seed=shuffle_seed) rng.shuffle(all_seeds) zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device).float() # Labels. label = torch.zeros([zs.size(0), G.c_dim], device=device) if G.c_dim != 0: if class_idx is None: raise click.ClickException('Must specify class label with --class when using a conditional network') label[:, class_idx] = 1 else: if class_idx is not None: print ('warn: --class=lbl ignored when running on an unconditional network') ws = G.mapping(z=zs, c=label, truncation_psi=psi) _ = G.synthesis(ws[:1], c=label) # warm up ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:]) # Interpolation. grid = [] for yi in range(grid_h): row = [] for xi in range(grid_w): x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1)) y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1]) interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0) row.append(interp) grid.append(row) # Render video. video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264', **video_kwargs) for frame_idx in tqdm(range(num_keyframes * w_frames)): imgs = [] for yi in range(grid_h): for xi in range(grid_w): interp = grid[yi][xi] w = torch.from_numpy(interp(frame_idx / w_frames)).to(device).float() img = G.synthesis(w.unsqueeze(0), c=label, noise_mode='const')[0] imgs.append(img) video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h)) video_out.close() #---------------------------------------------------------------------------- def parse_range(s: Union[str, List[int]]) -> List[int]: '''Parse a comma separated list of numbers or ranges and return a list of ints. Example: '1,2,5-10' returns [1, 2, 5, 6, 7] ''' if isinstance(s, list): return s ranges = [] range_re = re.compile(r'^(\d+)-(\d+)$') for p in s.split(','): m = range_re.match(p) if m: ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) else: ranges.append(int(p)) return ranges #---------------------------------------------------------------------------- def parse_tuple(s: Union[str, Tuple[int,int]]) -> Tuple[int, int]: '''Parse a 'M,N' or 'MxN' integer tuple. Example: '4x2' returns (4,2) '0,1' returns (0,1) ''' if isinstance(s, tuple): return s m = re.match(r'^(\d+)[x,](\d+)$', s) if m: return (int(m.group(1)), int(m.group(2))) raise ValueError(f'cannot parse tuple {s}') #---------------------------------------------------------------------------- @click.command() @click.option('--network', 'network_pkl', help='Network pickle filename', required=True) @click.option('--seeds', type=parse_range, help='List of random seeds', required=True) @click.option('--shuffle-seed', type=int, help='Random seed to use for shuffling seed order', default=None) @click.option('--grid', type=parse_tuple, help='Grid width/height, e.g. \'4x3\' (default: 1x1)', default=(1,1)) @click.option('--num-keyframes', type=int, help='Number of seeds to interpolate through. If not specified, determine based on the length of the seeds array given by --seeds.', default=None) @click.option('--w-frames', type=int, help='Number of frames to interpolate between latents', default=120) @click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) @click.option('--output', help='Output .mp4 filename', type=str, required=True, metavar='FILE') @click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)') def generate_images( network_pkl: str, seeds: List[int], shuffle_seed: Optional[int], truncation_psi: float, grid: Tuple[int,int], num_keyframes: Optional[int], w_frames: int, output: str, class_idx: Optional[int], ): """Render a latent vector interpolation video. Examples: \b # Render a 4x2 grid of interpolations for seeds 0 through 31. python gen_video.py --output=lerp.mp4 --trunc=1 --seeds=0-31 --grid=4x2 \\ --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl Animation length and seed keyframes: The animation length is either determined based on the --seeds value or explicitly specified using the --num-keyframes option. When num keyframes is specified with --num-keyframes, the output video length will be 'num_keyframes*w_frames' frames. If --num-keyframes is not specified, the number of seeds given with --seeds must be divisible by grid size W*H (--grid). In this case the output video length will be '# seeds/(w*h)*w_frames' frames. """ print('Loading networks from "%s"...' % network_pkl) device = torch.device('cuda') with dnnlib.util.open_url(network_pkl) as f: G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore gen_interp_video(G=G, mp4=output, bitrate='12M', grid_dims=grid, num_keyframes=num_keyframes, w_frames=w_frames, seeds=seeds, shuffle_seed=shuffle_seed, psi=truncation_psi, class_idx=class_idx) #---------------------------------------------------------------------------- if __name__ == "__main__": generate_images() # pylint: disable=no-value-for-parameter #----------------------------------------------------------------------------