---
license: cc-by-nc-sa-4.0
---
🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models
**CatVTON** is a simple and efficient virtual try-on diffusion model with ***1) Lightweight Network (899.06M parameters totally)***, ***2) Parameter-Efficient Training (49.57M parameters trainable)*** and ***3) Simplified Inference (< 8G VRAM for 1024X768 resolution)***.
## Updates
- **`2024/7/24`**: Our [**Paper on ArXiv**](http://arxiv.org/abs/2407.15886) is available now 🥳!
- **`2024/7/22`**: Our [**App Code**](https://github.com/Zheng-Chong/CatVTON/blob/main/app.py) is released, deploy and enjoy CatVTON on your own mechine 🎉!
- **`2024/7/21`**: Our [**Inference Code**](https://github.com/Zheng-Chong/CatVTON/blob/main/inference.py) and [**Weights** 🤗](https://huggingface.co/zhengchong/CatVTON) are released.
- **`2024/7/11`**: Our [**Online Demo**](http://120.76.142.206:8888) is released 😁.
## Installation
An [Installation Guide](https://github.com/Zheng-Chong/CatVTON/INSTALL.md) is provided to help build the conda environment for CatVTON. When deploying the app, you will need Detectron2 & DensePose, but these are not required for inference on datasets. Install the packages according to your needs.
## Deployment (Gradio App)
To deploy the Gradio App for CatVTON on your own machine, just run the following command, and checkpoints will be automaticly download from HuggingFace.
```PowerShell
CUDA_VISIBLE_DEVICES=0 python app.py \
--output_dir="resource/demo/output" \
--mixed_precision="bf16" \
--allow_tf32
```
When using `bf16` precision, generating results with a resolution of `1024x768` only requires about `8G` VRAM.
## Inference
### Data Preparation
Before inference, you need to download the [VITON-HD](https://github.com/shadow2496/VITON-HD) or [DressCode](https://github.com/aimagelab/dress-code) dataset.
Once the datasets are downloaded, the folder structures should look like these:
```
├── VITON-HD
| ├── test_pairs_unpaired.txt
│ ├── test
| | ├── image
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── agnostic-mask
│ │ │ ├── [000006_00_mask.png | 000008_00.png | ...]
...
```
For DressCode dataset, we provide [our preprocessed agnostic masks](https://drive.google.com/drive/folders/1uT88nYQl0n5qHz6zngb9WxGlX4ArAbVX?usp=share_link), download and place in `agnostic_masks` folders under each category.
```
├── DressCode
| ├── test_pairs_paired.txt
| ├── test_pairs_unpaired.txt
│ ├── [dresses | lower_body | upper_body]
| | ├── test_pairs_paired.txt
| | ├── test_pairs_unpaired.txt
│ │ ├── images
│ │ │ ├── [013563_0.jpg | 013563_1.jpg | 013564_0.jpg | 013564_1.jpg | ...]
│ │ ├── agnostic_masks
│ │ │ ├── [013563_0.png| 013564_0.png | ...]
...
```
### Inference on VTIONHD/DressCode
To run the inference on the DressCode or VITON-HD dataset, run the following command, checkpoints will be automaticly download from HuggingFace.
```PowerShell
CUDA_VISIBLE_DEVICES=0 python inference.py \
--dataset [dresscode | vitonhd] \
--data_root_path \
--output_dir
--dataloader_num_workers 8 \
--batch_size 8 \
--seed 555 \
--mixed_precision [no | fp16 | bf16] \
--allow_tf32 \
--repaint \
--eval_pair
```
## Acknowledgement
Our code is modified based on [Diffusers](https://github.com/huggingface/diffusers).
We adopt [Stable Diffusion v1.5 inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting) as base model.
We use [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing/tree/master)
and [DensePose](https://github.com/facebookresearch/DensePose) to automatically generate masks in our
[Gradio](https://github.com/gradio-app/gradio) App.
Thanks to all the contributors!
## Citation
```
@misc{chong2024catvtonconcatenationneedvirtual,
title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models},
author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang},
year={2024},
eprint={2407.15886},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.15886},
}
```