zheyangqin commited on
Commit
130b747
·
verified ·
1 Parent(s): 9347c75

Update readme.md

Browse files
Files changed (1) hide show
  1. readme.md +33 -34
readme.md CHANGED
@@ -1,35 +1,34 @@
1
- <div align="center">
2
-
3
- <!-- TITLE -->
4
- # **Video Diffusion Alignment via Reward Gradient**
5
- ![VADER](assets/vader_method.png)
6
-
7
- [![arXiv](https://img.shields.io/badge/cs.LG-)]()
8
- [![Website](https://img.shields.io/badge/🌎-Website-blue.svg)](http://vader-vid.github.io)
9
- [![GitHub](https://img.shields.io/github/stars/mihirp1998/VADER?style=social)](https://github.com/mihirp1998/VADER)
10
- </div>
11
-
12
- This is the official implementation of our paper [Video Diffusion Alignment via Reward Gradient](https://vader-vid.github.io/) by
13
-
14
- Mihir Prabhudesai*, Russell Mendonca*, Zheyang Qin*, Katerina Fragkiadaki, Deepak Pathak.
15
-
16
-
17
- <!-- DESCRIPTION -->
18
- ## Abstract
19
- We have made significant progress towards building foundational video diffusion models. As these models are trained using large-scale unsupervised data, it has become crucial to adapt these models to specific downstream tasks, such as video-text alignment or ethical video generation. Adapting these models via supervised fine-tuning requires collecting target datasets of videos, which is challenging and tedious. In this work, we instead utilize pre-trained reward models that are learned via preferences on top of powerful discriminative models. These models contain dense gradient information with respect to generated RGB pixels, which is critical to be able to learn efficiently in complex search spaces, such as videos. We show that our approach can enable alignment of video diffusion for aesthetic generations, similarity between text context and video, as well long horizon video generations that are 3X longer than the training sequence length. We show our approach can learn much more efficiently in terms of reward queries and compute than previous gradient-free approaches for video generation.
20
-
21
- ## Demo
22
- | | | |
23
- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
24
- | <img src="assets/videos/8.gif" width=""> | <img src="assets/videos/5.gif" width=""> | <img src="assets/videos/7.gif" width=""> |
25
- | <img src="assets/videos/10.gif" width=""> | <img src="assets/videos/3.gif" width=""> | <img src="assets/videos/4.gif" width=""> |
26
- | <img src="assets/videos/9.gif" width=""> | <img src="assets/videos/1.gif" width=""> | <img src="assets/videos/11.gif" width=""> |
27
-
28
-
29
- ## Citation
30
-
31
- If you find this work useful in your research, please cite:
32
-
33
- ```bibtex
34
-
35
  ```
 
1
+ <div align="center">
2
+
3
+ <!-- TITLE -->
4
+ # **Video Diffusion Alignment via Reward Gradient**
5
+ ![VADER](assets/vader_method.png)
6
+
7
+ [![Website](https://img.shields.io/badge/🌎-Website-blue.svg)](http://vader-vid.github.io)
8
+ [![GitHub](https://img.shields.io/github/stars/mihirp1998/VADER?style=social)](https://github.com/mihirp1998/VADER)
9
+ </div>
10
+
11
+ This is the official implementation of our paper [Video Diffusion Alignment via Reward Gradient](https://vader-vid.github.io/) by
12
+
13
+ Mihir Prabhudesai*, Russell Mendonca*, Zheyang Qin*, Katerina Fragkiadaki, Deepak Pathak.
14
+
15
+
16
+ <!-- DESCRIPTION -->
17
+ ## Abstract
18
+ We have made significant progress towards building foundational video diffusion models. As these models are trained using large-scale unsupervised data, it has become crucial to adapt these models to specific downstream tasks, such as video-text alignment or ethical video generation. Adapting these models via supervised fine-tuning requires collecting target datasets of videos, which is challenging and tedious. In this work, we instead utilize pre-trained reward models that are learned via preferences on top of powerful discriminative models. These models contain dense gradient information with respect to generated RGB pixels, which is critical to be able to learn efficiently in complex search spaces, such as videos. We show that our approach can enable alignment of video diffusion for aesthetic generations, similarity between text context and video, as well long horizon video generations that are 3X longer than the training sequence length. We show our approach can learn much more efficiently in terms of reward queries and compute than previous gradient-free approaches for video generation.
19
+
20
+ ## Demo
21
+ | | | |
22
+ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
23
+ | <img src="assets/videos/8.gif" width=""> | <img src="assets/videos/5.gif" width=""> | <img src="assets/videos/7.gif" width=""> |
24
+ | <img src="assets/videos/10.gif" width=""> | <img src="assets/videos/3.gif" width=""> | <img src="assets/videos/4.gif" width=""> |
25
+ | <img src="assets/videos/9.gif" width=""> | <img src="assets/videos/1.gif" width=""> | <img src="assets/videos/11.gif" width=""> |
26
+
27
+
28
+ ## Citation
29
+
30
+ If you find this work useful in your research, please cite:
31
+
32
+ ```bibtex
33
+
 
34
  ```