zhihan1996
commited on
Commit
·
4cdee9f
1
Parent(s):
c296157
Upload 2 files
Browse filesEnable input longer than 512 by truncating it into multiple pieces of 512-length sequences and taking the average embedding as the input embedding.
- configuration_bert.py +23 -0
- dnabert_layer.py +110 -0
configuration_bert.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
from transformers import BertConfig as TransformersBertConfig
|
5 |
+
|
6 |
+
|
7 |
+
class BertConfig(TransformersBertConfig):
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
**kwargs,
|
12 |
+
):
|
13 |
+
"""Configuration class for MosaicBert.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
|
17 |
+
create when initializing the model. You should be able to ignore this parameter in most cases.
|
18 |
+
Defaults to 512.
|
19 |
+
attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT
|
20 |
+
(otherwise, Flash Attention will be off by default). Defaults to 0.0.
|
21 |
+
"""
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
|
dnabert_layer.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
6 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
|
7 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
+
|
9 |
+
class DNABertForSequenceClassification(BertPreTrainedModel):
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__(config)
|
12 |
+
self.num_labels = config.num_labels
|
13 |
+
self.config = config
|
14 |
+
|
15 |
+
self.bert = BertModel(config)
|
16 |
+
classifier_dropout = (
|
17 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
18 |
+
)
|
19 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
20 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
21 |
+
|
22 |
+
# Initialize weights and apply final processing
|
23 |
+
self.post_init()
|
24 |
+
|
25 |
+
def forward(
|
26 |
+
self,
|
27 |
+
input_ids: Optional[torch.Tensor] = None,
|
28 |
+
attention_mask: Optional[torch.Tensor] = None,
|
29 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
30 |
+
position_ids: Optional[torch.Tensor] = None,
|
31 |
+
head_mask: Optional[torch.Tensor] = None,
|
32 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
33 |
+
labels: Optional[torch.Tensor] = None,
|
34 |
+
output_attentions: Optional[bool] = None,
|
35 |
+
output_hidden_states: Optional[bool] = None,
|
36 |
+
return_dict: Optional[bool] = None,
|
37 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
38 |
+
r"""
|
39 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
40 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
41 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
42 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
43 |
+
"""
|
44 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
45 |
+
|
46 |
+
# get the size of input_ids
|
47 |
+
batch_size, seq_len = input_ids.shape
|
48 |
+
if seq_len > 512:
|
49 |
+
assert seq_len % 512 == 0, "seq_len should be a multiple of 512"
|
50 |
+
# split the input_ids into multiple chunks
|
51 |
+
input_ids = input_ids.view(-1, 512)
|
52 |
+
attention_mask = attention_mask.view(-1, 512) if attention_mask is not None else None
|
53 |
+
token_type_ids = token_type_ids.view(-1, 512) if token_type_ids is not None else None
|
54 |
+
position_ids = None
|
55 |
+
|
56 |
+
outputs = self.bert(
|
57 |
+
input_ids,
|
58 |
+
attention_mask=attention_mask,
|
59 |
+
token_type_ids=token_type_ids,
|
60 |
+
position_ids=position_ids,
|
61 |
+
head_mask=head_mask,
|
62 |
+
inputs_embeds=inputs_embeds,
|
63 |
+
output_attentions=output_attentions,
|
64 |
+
output_hidden_states=output_hidden_states,
|
65 |
+
return_dict=return_dict,
|
66 |
+
)
|
67 |
+
|
68 |
+
pooled_output = outputs[1]
|
69 |
+
|
70 |
+
if seq_len > 512:
|
71 |
+
# reshape the pooled_output
|
72 |
+
pooled_output = pooled_output.view(batch_size, -1, pooled_output.shape[-1])
|
73 |
+
# take the mean of the pooled_output
|
74 |
+
pooled_output = torch.mean(pooled_output, dim=1)
|
75 |
+
|
76 |
+
pooled_output = self.dropout(pooled_output)
|
77 |
+
logits = self.classifier(pooled_output)
|
78 |
+
|
79 |
+
loss = None
|
80 |
+
if labels is not None:
|
81 |
+
if self.config.problem_type is None:
|
82 |
+
if self.num_labels == 1:
|
83 |
+
self.config.problem_type = "regression"
|
84 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
85 |
+
self.config.problem_type = "single_label_classification"
|
86 |
+
else:
|
87 |
+
self.config.problem_type = "multi_label_classification"
|
88 |
+
|
89 |
+
if self.config.problem_type == "regression":
|
90 |
+
loss_fct = MSELoss()
|
91 |
+
if self.num_labels == 1:
|
92 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
93 |
+
else:
|
94 |
+
loss = loss_fct(logits, labels)
|
95 |
+
elif self.config.problem_type == "single_label_classification":
|
96 |
+
loss_fct = CrossEntropyLoss()
|
97 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
98 |
+
elif self.config.problem_type == "multi_label_classification":
|
99 |
+
loss_fct = BCEWithLogitsLoss()
|
100 |
+
loss = loss_fct(logits, labels)
|
101 |
+
if not return_dict:
|
102 |
+
output = (logits,) + outputs[2:]
|
103 |
+
return ((loss,) + output) if loss is not None else output
|
104 |
+
|
105 |
+
return SequenceClassifierOutput(
|
106 |
+
loss=loss,
|
107 |
+
logits=logits,
|
108 |
+
hidden_states=outputs.hidden_states,
|
109 |
+
attentions=outputs.attentions,
|
110 |
+
)
|