zhiyuanyou
commited on
Commit
·
d4dad89
1
Parent(s):
f5f800d
add script files
Browse files- .gitattributes +0 -0
- README.md +0 -0
- __init__.py +6 -0
- config.json +217 -0
- configuration_mplug_owl2.py +334 -0
- generation_config.json +9 -0
- modeling_attn_mask_utils.py +247 -0
- modeling_llama2.py +834 -0
- modeling_mplug_owl2_huggingface.py +400 -0
- preprocessor_config.json +19 -0
- pytorch_model.bin.index.json +869 -0
- special_tokens_map.json +24 -0
- tokenizer.model +0 -0
- tokenizer_config.json +35 -0
- trainer_state.json +3432 -0
- training_args.bin +0 -0
- visual_encoder.py +922 -0
.gitattributes
CHANGED
File without changes
|
README.md
CHANGED
File without changes
|
__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import all *.py files here, they will be copied to .cache
|
2 |
+
from .configuration_mplug_owl2 import MPLUGOwl2Config
|
3 |
+
from .modeling_attn_mask_utils import *
|
4 |
+
from .modeling_llama2 import *
|
5 |
+
from .modeling_mplug_owl2_huggingface import MPLUGOwl2LlamaForCausalLM
|
6 |
+
from .visual_encoder import *
|
config.json
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "zhiyuanyou/DeQA-Score-Mix3",
|
3 |
+
"model_type": "mplug_owl2",
|
4 |
+
"architectures": [
|
5 |
+
"MPLUGOwl2LlamaForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "__init__.MPLUGOwl2Config",
|
9 |
+
"AutoModel": "__init__.MPLUGOwl2LlamaForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "__init__.MPLUGOwl2LlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"attention_bias": false,
|
13 |
+
"attention_dropout": 0.0,
|
14 |
+
"binary_rating_loss": "fidelity",
|
15 |
+
"bos_token_id": 1,
|
16 |
+
"closeset_rating_loss": true,
|
17 |
+
"continuous_rating_loss": true,
|
18 |
+
"eos_token_id": 2,
|
19 |
+
"freeze_vision_model": false,
|
20 |
+
"hidden_act": "silu",
|
21 |
+
"hidden_size": 4096,
|
22 |
+
"image_aspect_ratio": "pad",
|
23 |
+
"image_grid_pinpoints": null,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 11008,
|
26 |
+
"learned_scale": true,
|
27 |
+
"level_ids": [
|
28 |
+
15129,
|
29 |
+
1781,
|
30 |
+
6534,
|
31 |
+
6460,
|
32 |
+
4319
|
33 |
+
],
|
34 |
+
"level_prefix": [
|
35 |
+
450,
|
36 |
+
11029,
|
37 |
+
310,
|
38 |
+
278,
|
39 |
+
1967,
|
40 |
+
338
|
41 |
+
],
|
42 |
+
"max_position_embeddings": 2048,
|
43 |
+
"num_attention_heads": 32,
|
44 |
+
"num_hidden_layers": 32,
|
45 |
+
"num_key_value_heads": 32,
|
46 |
+
"pretraining_tp": 1,
|
47 |
+
"rms_norm_eps": 1e-06,
|
48 |
+
"rope_scaling": null,
|
49 |
+
"rope_theta": 10000.0,
|
50 |
+
"softkl_loss": true,
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"torch_dtype": "bfloat16",
|
53 |
+
"transformers_version": "4.36.1",
|
54 |
+
"tune_visual_abstractor": true,
|
55 |
+
"use_cache": true,
|
56 |
+
"visual_abstractor_lr": null,
|
57 |
+
"visual_config": {
|
58 |
+
"visual_abstractor": {
|
59 |
+
"_name_or_path": "",
|
60 |
+
"add_cross_attention": false,
|
61 |
+
"architectures": null,
|
62 |
+
"attention_probs_dropout_prob": 0.0,
|
63 |
+
"bad_words_ids": null,
|
64 |
+
"begin_suppress_tokens": null,
|
65 |
+
"bos_token_id": null,
|
66 |
+
"chunk_size_feed_forward": 0,
|
67 |
+
"cross_attention_hidden_size": null,
|
68 |
+
"decoder_start_token_id": null,
|
69 |
+
"diversity_penalty": 0.0,
|
70 |
+
"do_sample": false,
|
71 |
+
"early_stopping": false,
|
72 |
+
"encoder_hidden_size": 1024,
|
73 |
+
"encoder_no_repeat_ngram_size": 0,
|
74 |
+
"eos_token_id": null,
|
75 |
+
"exponential_decay_length_penalty": null,
|
76 |
+
"finetuning_task": null,
|
77 |
+
"forced_bos_token_id": null,
|
78 |
+
"forced_eos_token_id": null,
|
79 |
+
"grid_size": 32,
|
80 |
+
"hidden_size": 1024,
|
81 |
+
"id2label": {
|
82 |
+
"0": "LABEL_0",
|
83 |
+
"1": "LABEL_1"
|
84 |
+
},
|
85 |
+
"initializer_range": 0.02,
|
86 |
+
"intermediate_size": 2816,
|
87 |
+
"is_decoder": false,
|
88 |
+
"is_encoder_decoder": false,
|
89 |
+
"label2id": {
|
90 |
+
"LABEL_0": 0,
|
91 |
+
"LABEL_1": 1
|
92 |
+
},
|
93 |
+
"layer_norm_eps": 1e-06,
|
94 |
+
"length_penalty": 1.0,
|
95 |
+
"max_length": 20,
|
96 |
+
"min_length": 0,
|
97 |
+
"model_type": "mplug_owl_visual_abstract",
|
98 |
+
"no_repeat_ngram_size": 0,
|
99 |
+
"num_attention_heads": 16,
|
100 |
+
"num_beam_groups": 1,
|
101 |
+
"num_beams": 1,
|
102 |
+
"num_hidden_layers": 6,
|
103 |
+
"num_learnable_queries": 64,
|
104 |
+
"num_return_sequences": 1,
|
105 |
+
"output_attentions": false,
|
106 |
+
"output_hidden_states": false,
|
107 |
+
"output_scores": false,
|
108 |
+
"pad_token_id": null,
|
109 |
+
"prefix": null,
|
110 |
+
"problem_type": null,
|
111 |
+
"pruned_heads": {},
|
112 |
+
"remove_invalid_values": false,
|
113 |
+
"repetition_penalty": 1.0,
|
114 |
+
"return_dict": true,
|
115 |
+
"return_dict_in_generate": false,
|
116 |
+
"sep_token_id": null,
|
117 |
+
"suppress_tokens": null,
|
118 |
+
"task_specific_params": null,
|
119 |
+
"temperature": 1.0,
|
120 |
+
"tf_legacy_loss": false,
|
121 |
+
"tie_encoder_decoder": false,
|
122 |
+
"tie_word_embeddings": true,
|
123 |
+
"tokenizer_class": null,
|
124 |
+
"top_k": 50,
|
125 |
+
"top_p": 1.0,
|
126 |
+
"torch_dtype": null,
|
127 |
+
"torchscript": false,
|
128 |
+
"transformers_version": "4.28.1",
|
129 |
+
"typical_p": 1.0,
|
130 |
+
"use_bfloat16": false
|
131 |
+
},
|
132 |
+
"visual_model": {
|
133 |
+
"_name_or_path": "",
|
134 |
+
"add_cross_attention": false,
|
135 |
+
"architectures": null,
|
136 |
+
"attention_dropout": 0.0,
|
137 |
+
"bad_words_ids": null,
|
138 |
+
"begin_suppress_tokens": null,
|
139 |
+
"bos_token_id": null,
|
140 |
+
"chunk_size_feed_forward": 0,
|
141 |
+
"cross_attention_hidden_size": null,
|
142 |
+
"decoder_start_token_id": null,
|
143 |
+
"diversity_penalty": 0.0,
|
144 |
+
"do_sample": false,
|
145 |
+
"early_stopping": false,
|
146 |
+
"encoder_no_repeat_ngram_size": 0,
|
147 |
+
"eos_token_id": null,
|
148 |
+
"exponential_decay_length_penalty": null,
|
149 |
+
"finetuning_task": null,
|
150 |
+
"forced_bos_token_id": null,
|
151 |
+
"forced_eos_token_id": null,
|
152 |
+
"hidden_act": "quick_gelu",
|
153 |
+
"hidden_size": 1024,
|
154 |
+
"id2label": {
|
155 |
+
"0": "LABEL_0",
|
156 |
+
"1": "LABEL_1"
|
157 |
+
},
|
158 |
+
"image_size": 448,
|
159 |
+
"initializer_factor": 1.0,
|
160 |
+
"initializer_range": 0.02,
|
161 |
+
"intermediate_size": 4096,
|
162 |
+
"is_decoder": false,
|
163 |
+
"is_encoder_decoder": false,
|
164 |
+
"label2id": {
|
165 |
+
"LABEL_0": 0,
|
166 |
+
"LABEL_1": 1
|
167 |
+
},
|
168 |
+
"layer_norm_eps": 1e-06,
|
169 |
+
"length_penalty": 1.0,
|
170 |
+
"max_length": 20,
|
171 |
+
"min_length": 0,
|
172 |
+
"model_type": "mplug_owl_vision_model",
|
173 |
+
"no_repeat_ngram_size": 0,
|
174 |
+
"num_attention_heads": 16,
|
175 |
+
"num_beam_groups": 1,
|
176 |
+
"num_beams": 1,
|
177 |
+
"num_channels": 3,
|
178 |
+
"num_hidden_layers": 24,
|
179 |
+
"num_return_sequences": 1,
|
180 |
+
"output_attentions": false,
|
181 |
+
"output_hidden_states": false,
|
182 |
+
"output_scores": false,
|
183 |
+
"pad_token_id": null,
|
184 |
+
"patch_size": 14,
|
185 |
+
"prefix": null,
|
186 |
+
"problem_type": null,
|
187 |
+
"projection_dim": 768,
|
188 |
+
"pruned_heads": {},
|
189 |
+
"remove_invalid_values": false,
|
190 |
+
"repetition_penalty": 1.0,
|
191 |
+
"return_dict": true,
|
192 |
+
"return_dict_in_generate": false,
|
193 |
+
"sep_token_id": null,
|
194 |
+
"suppress_tokens": null,
|
195 |
+
"task_specific_params": null,
|
196 |
+
"temperature": 1.0,
|
197 |
+
"tf_legacy_loss": false,
|
198 |
+
"tie_encoder_decoder": false,
|
199 |
+
"tie_word_embeddings": true,
|
200 |
+
"tokenizer_class": null,
|
201 |
+
"top_k": 50,
|
202 |
+
"top_p": 1.0,
|
203 |
+
"torch_dtype": null,
|
204 |
+
"torchscript": false,
|
205 |
+
"transformers_version": "4.28.1",
|
206 |
+
"typical_p": 1.0,
|
207 |
+
"use_bfloat16": false,
|
208 |
+
"use_flash_attn": false
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"vocab_size": 32000,
|
212 |
+
"weight_desp": 1.0,
|
213 |
+
"weight_in_level": null,
|
214 |
+
"weight_next_token": 0.05,
|
215 |
+
"weight_rank": 1.0,
|
216 |
+
"weight_softkl": 1.0
|
217 |
+
}
|
configuration_mplug_owl2.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
import copy
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
11 |
+
from transformers.utils import logging
|
12 |
+
from transformers.models.auto import CONFIG_MAPPING
|
13 |
+
|
14 |
+
|
15 |
+
class LlamaConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
18 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
19 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
|
25 |
+
Args:
|
26 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
27 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
28 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
30 |
+
Dimension of the hidden representations.
|
31 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
32 |
+
Dimension of the MLP representations.
|
33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
+
Number of hidden layers in the Transformer decoder.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
37 |
+
num_key_value_heads (`int`, *optional*):
|
38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
40 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
44 |
+
`num_attention_heads`.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
46 |
+
The non-linear activation function (function or string) in the decoder.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
48 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
49 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
50 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
51 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
52 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
53 |
+
The epsilon used by the rms normalization layers.
|
54 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
56 |
+
relevant if `config.is_decoder=True`.
|
57 |
+
pad_token_id (`int`, *optional*):
|
58 |
+
Padding token id.
|
59 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
60 |
+
Beginning of stream token id.
|
61 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
62 |
+
End of stream token id.
|
63 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
64 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
65 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
66 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
67 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether to tie weight embeddings
|
70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
71 |
+
The base period of the RoPE embeddings.
|
72 |
+
rope_scaling (`Dict`, *optional*):
|
73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
74 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
75 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
76 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
77 |
+
these scaling strategies behave:
|
78 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
79 |
+
experimental feature, subject to breaking API changes in future versions.
|
80 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
81 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
82 |
+
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
86 |
+
|
87 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
88 |
+
>>> configuration = LlamaConfig()
|
89 |
+
|
90 |
+
>>> # Initializing a model from the llama-7b style configuration
|
91 |
+
>>> model = LlamaModel(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
model_type = "llama"
|
97 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=32000,
|
102 |
+
hidden_size=4096,
|
103 |
+
intermediate_size=11008,
|
104 |
+
num_hidden_layers=32,
|
105 |
+
num_attention_heads=32,
|
106 |
+
num_key_value_heads=None,
|
107 |
+
hidden_act="silu",
|
108 |
+
max_position_embeddings=2048,
|
109 |
+
initializer_range=0.02,
|
110 |
+
rms_norm_eps=1e-6,
|
111 |
+
use_cache=True,
|
112 |
+
pad_token_id=None,
|
113 |
+
bos_token_id=1,
|
114 |
+
eos_token_id=2,
|
115 |
+
pretraining_tp=1,
|
116 |
+
tie_word_embeddings=False,
|
117 |
+
rope_theta=10000.0,
|
118 |
+
rope_scaling=None,
|
119 |
+
attention_bias=False,
|
120 |
+
attention_dropout=0.0,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.hidden_size = hidden_size
|
126 |
+
self.intermediate_size = intermediate_size
|
127 |
+
self.num_hidden_layers = num_hidden_layers
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
|
130 |
+
# for backward compatibility
|
131 |
+
if num_key_value_heads is None:
|
132 |
+
num_key_value_heads = num_attention_heads
|
133 |
+
|
134 |
+
self.num_key_value_heads = num_key_value_heads
|
135 |
+
self.hidden_act = hidden_act
|
136 |
+
self.initializer_range = initializer_range
|
137 |
+
self.rms_norm_eps = rms_norm_eps
|
138 |
+
self.pretraining_tp = pretraining_tp
|
139 |
+
self.use_cache = use_cache
|
140 |
+
self.rope_theta = rope_theta
|
141 |
+
self.rope_scaling = rope_scaling
|
142 |
+
self._rope_scaling_validation()
|
143 |
+
self.attention_bias = attention_bias
|
144 |
+
self.attention_dropout = attention_dropout
|
145 |
+
|
146 |
+
super().__init__(
|
147 |
+
pad_token_id=pad_token_id,
|
148 |
+
bos_token_id=bos_token_id,
|
149 |
+
eos_token_id=eos_token_id,
|
150 |
+
tie_word_embeddings=tie_word_embeddings,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
def _rope_scaling_validation(self):
|
155 |
+
"""
|
156 |
+
Validate the `rope_scaling` configuration.
|
157 |
+
"""
|
158 |
+
if self.rope_scaling is None:
|
159 |
+
return
|
160 |
+
|
161 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
162 |
+
raise ValueError(
|
163 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
164 |
+
f"got {self.rope_scaling}"
|
165 |
+
)
|
166 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
167 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
168 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
169 |
+
raise ValueError(
|
170 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
171 |
+
)
|
172 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
173 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
174 |
+
|
175 |
+
|
176 |
+
class MplugOwlVisionConfig(PretrainedConfig):
|
177 |
+
r"""
|
178 |
+
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
|
179 |
+
a
|
180 |
+
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
181 |
+
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
|
182 |
+
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
|
183 |
+
|
184 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
185 |
+
documentation from [`PretrainedConfig`] for more information.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
189 |
+
Dimensionality of the encoder layers and the pooler layer.
|
190 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
191 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
192 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
193 |
+
Number of hidden layers in the Transformer encoder.
|
194 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
195 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
196 |
+
image_size (`int`, *optional*, defaults to 224):
|
197 |
+
The size (resolution) of each image.
|
198 |
+
patch_size (`int`, *optional*, defaults to 32):
|
199 |
+
The size (resolution) of each patch.
|
200 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
201 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
202 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
203 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
204 |
+
The epsilon used by the layer normalization layers.
|
205 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
206 |
+
The dropout ratio for the attention probabilities.
|
207 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
208 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
209 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
210 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
211 |
+
testing).
|
212 |
+
|
213 |
+
|
214 |
+
```"""
|
215 |
+
|
216 |
+
model_type = "mplug_owl_vision_model"
|
217 |
+
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
hidden_size=1024,
|
221 |
+
intermediate_size=4096,
|
222 |
+
projection_dim=768,
|
223 |
+
num_hidden_layers=24,
|
224 |
+
num_attention_heads=16,
|
225 |
+
num_channels=3,
|
226 |
+
image_size=448,
|
227 |
+
patch_size=14,
|
228 |
+
hidden_act="quick_gelu",
|
229 |
+
layer_norm_eps=1e-6,
|
230 |
+
attention_dropout=0.0,
|
231 |
+
initializer_range=0.02,
|
232 |
+
initializer_factor=1.0,
|
233 |
+
use_flash_attn=False,
|
234 |
+
**kwargs,
|
235 |
+
):
|
236 |
+
super().__init__(**kwargs)
|
237 |
+
self.hidden_size = hidden_size
|
238 |
+
self.intermediate_size = intermediate_size
|
239 |
+
self.projection_dim = projection_dim
|
240 |
+
self.num_hidden_layers = num_hidden_layers
|
241 |
+
self.num_attention_heads = num_attention_heads
|
242 |
+
self.num_channels = num_channels
|
243 |
+
self.patch_size = patch_size
|
244 |
+
self.image_size = image_size
|
245 |
+
self.initializer_range = initializer_range
|
246 |
+
self.initializer_factor = initializer_factor
|
247 |
+
self.attention_dropout = attention_dropout
|
248 |
+
self.layer_norm_eps = layer_norm_eps
|
249 |
+
self.hidden_act = hidden_act
|
250 |
+
self.use_flash_attn = use_flash_attn
|
251 |
+
|
252 |
+
@classmethod
|
253 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
254 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
255 |
+
|
256 |
+
# get the vision config dict if we are loading from MplugOwlConfig
|
257 |
+
if config_dict.get("model_type") == "mplug-owl":
|
258 |
+
config_dict = config_dict["vision_config"]
|
259 |
+
|
260 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
261 |
+
logger.warning(
|
262 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
263 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
264 |
+
)
|
265 |
+
|
266 |
+
return cls.from_dict(config_dict, **kwargs)
|
267 |
+
|
268 |
+
|
269 |
+
class MplugOwlVisualAbstractorConfig(PretrainedConfig):
|
270 |
+
model_type = "mplug_owl_visual_abstract"
|
271 |
+
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
num_learnable_queries=64,
|
275 |
+
hidden_size=1024,
|
276 |
+
num_hidden_layers=6,
|
277 |
+
num_attention_heads=16,
|
278 |
+
intermediate_size=2816,
|
279 |
+
attention_probs_dropout_prob=0.,
|
280 |
+
initializer_range=0.02,
|
281 |
+
layer_norm_eps=1e-6,
|
282 |
+
encoder_hidden_size=1024,
|
283 |
+
grid_size=None,
|
284 |
+
**kwargs,
|
285 |
+
):
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
self.hidden_size = hidden_size
|
288 |
+
self.num_learnable_queries = num_learnable_queries
|
289 |
+
self.num_hidden_layers = num_hidden_layers
|
290 |
+
self.num_attention_heads = num_attention_heads
|
291 |
+
self.intermediate_size = intermediate_size
|
292 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
293 |
+
self.initializer_range = initializer_range
|
294 |
+
self.layer_norm_eps = layer_norm_eps
|
295 |
+
self.encoder_hidden_size = encoder_hidden_size
|
296 |
+
self.grid_size = grid_size if grid_size else 32
|
297 |
+
|
298 |
+
@classmethod
|
299 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
300 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
301 |
+
|
302 |
+
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
|
303 |
+
if config_dict.get("model_type") == "mplug-owl":
|
304 |
+
config_dict = config_dict["abstractor_config"]
|
305 |
+
|
306 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
307 |
+
logger.warning(
|
308 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
309 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
310 |
+
)
|
311 |
+
|
312 |
+
return cls.from_dict(config_dict, **kwargs)
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
DEFAULT_VISUAL_CONFIG = {
|
317 |
+
"visual_model": MplugOwlVisionConfig().to_dict(),
|
318 |
+
"visual_abstractor": MplugOwlVisualAbstractorConfig().to_dict()
|
319 |
+
}
|
320 |
+
|
321 |
+
class MPLUGOwl2Config(LlamaConfig):
|
322 |
+
model_type = "mplug_owl2"
|
323 |
+
def __init__(self, visual_config=None, **kwargs):
|
324 |
+
if visual_config is None:
|
325 |
+
self.visual_config = DEFAULT_VISUAL_CONFIG
|
326 |
+
else:
|
327 |
+
self.visual_config = visual_config
|
328 |
+
|
329 |
+
super().__init__(
|
330 |
+
**kwargs,
|
331 |
+
)
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
print(MplugOwlVisionConfig().to_dict())
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 4096,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"temperature": 0.9,
|
7 |
+
"top_p": 0.6,
|
8 |
+
"transformers_version": "4.31.0"
|
9 |
+
}
|
modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
|
19 |
+
class AttentionMaskConverter:
|
20 |
+
"""
|
21 |
+
A utility attention mask class that allows one to:
|
22 |
+
- Create a causal 4d mask
|
23 |
+
- Create a causal 4d mask with slided window
|
24 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
25 |
+
key_value_length) that can be multiplied with attention scores
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
is_causal (`bool`):
|
29 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
30 |
+
|
31 |
+
sliding_window (`int`, *optional*):
|
32 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
36 |
+
self.is_causal = is_causal
|
37 |
+
self.sliding_window = sliding_window
|
38 |
+
|
39 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
40 |
+
raise ValueError(
|
41 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
42 |
+
)
|
43 |
+
|
44 |
+
def to_causal_4d(
|
45 |
+
self,
|
46 |
+
batch_size: int,
|
47 |
+
query_length: int,
|
48 |
+
key_value_length: int,
|
49 |
+
dtype: torch.dtype = torch.float32,
|
50 |
+
device: Union[torch.device, "str"] = "cpu",
|
51 |
+
) -> torch.Tensor:
|
52 |
+
"""
|
53 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
54 |
+
bias to upper right hand triangular matrix (causal mask).
|
55 |
+
"""
|
56 |
+
if not self.is_causal:
|
57 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
58 |
+
|
59 |
+
# If shape is not cached, create a new causal mask and cache it
|
60 |
+
input_shape = (batch_size, query_length)
|
61 |
+
past_key_values_length = key_value_length - query_length
|
62 |
+
|
63 |
+
# create causal mask
|
64 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
65 |
+
causal_4d_mask = None
|
66 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
67 |
+
causal_4d_mask = self._make_causal_mask(
|
68 |
+
input_shape,
|
69 |
+
dtype,
|
70 |
+
device=device,
|
71 |
+
past_key_values_length=past_key_values_length,
|
72 |
+
sliding_window=self.sliding_window,
|
73 |
+
)
|
74 |
+
|
75 |
+
return causal_4d_mask
|
76 |
+
|
77 |
+
def to_4d(
|
78 |
+
self,
|
79 |
+
attention_mask_2d: torch.Tensor,
|
80 |
+
query_length: int,
|
81 |
+
key_value_length: Optional[int] = None,
|
82 |
+
dtype: torch.dtype = torch.float32,
|
83 |
+
) -> torch.Tensor:
|
84 |
+
"""
|
85 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
86 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
87 |
+
causal, a causal mask will be added.
|
88 |
+
"""
|
89 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
90 |
+
|
91 |
+
# create causal mask
|
92 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
93 |
+
causal_4d_mask = None
|
94 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
95 |
+
if key_value_length is None:
|
96 |
+
raise ValueError(
|
97 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
98 |
+
)
|
99 |
+
|
100 |
+
past_key_values_length = key_value_length - query_length
|
101 |
+
causal_4d_mask = self._make_causal_mask(
|
102 |
+
input_shape,
|
103 |
+
dtype,
|
104 |
+
device=attention_mask_2d.device,
|
105 |
+
past_key_values_length=past_key_values_length,
|
106 |
+
sliding_window=self.sliding_window,
|
107 |
+
)
|
108 |
+
elif self.sliding_window is not None:
|
109 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
110 |
+
|
111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
112 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
113 |
+
attention_mask_2d.device
|
114 |
+
)
|
115 |
+
expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
|
116 |
+
|
117 |
+
return expanded_4d_mask
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def _make_causal_mask(
|
121 |
+
input_ids_shape: torch.Size,
|
122 |
+
dtype: torch.dtype,
|
123 |
+
device: torch.device,
|
124 |
+
past_key_values_length: int = 0,
|
125 |
+
sliding_window: Optional[int] = None,
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Make causal mask used for bi-directional self-attention.
|
129 |
+
"""
|
130 |
+
bsz, tgt_len = input_ids_shape
|
131 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
132 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
133 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
134 |
+
|
135 |
+
mask = mask.to(dtype)
|
136 |
+
|
137 |
+
if past_key_values_length > 0:
|
138 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
139 |
+
|
140 |
+
# add lower triangular sliding window mask if necessary
|
141 |
+
if sliding_window is not None:
|
142 |
+
diagonal = past_key_values_length - sliding_window + 1
|
143 |
+
|
144 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
145 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
146 |
+
|
147 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
151 |
+
"""
|
152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
153 |
+
"""
|
154 |
+
bsz, src_len = mask.size()
|
155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
156 |
+
|
157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
158 |
+
|
159 |
+
inverted_mask = 1.0 - expanded_mask
|
160 |
+
|
161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
162 |
+
|
163 |
+
|
164 |
+
def _prepare_4d_causal_attention_mask(
|
165 |
+
attention_mask: Optional[torch.Tensor],
|
166 |
+
input_shape: Union[torch.Size, Tuple, List],
|
167 |
+
inputs_embeds: torch.Tensor,
|
168 |
+
past_key_values_length: int,
|
169 |
+
sliding_window: Optional[int] = None,
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
173 |
+
`(batch_size, key_value_length)`
|
174 |
+
|
175 |
+
Args:
|
176 |
+
attention_mask (`torch.Tensor` or `None`):
|
177 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
178 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
179 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
180 |
+
inputs_embeds (`torch.Tensor`):
|
181 |
+
The embedded inputs as a torch Tensor.
|
182 |
+
past_key_values_length (`int`):
|
183 |
+
The length of the key value cache.
|
184 |
+
sliding_window (`int`, *optional*):
|
185 |
+
If the model uses windowed attention, a sliding window should be passed.
|
186 |
+
"""
|
187 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
188 |
+
|
189 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
190 |
+
|
191 |
+
# 4d mask is passed through the layers
|
192 |
+
if attention_mask is not None:
|
193 |
+
attention_mask = attn_mask_converter.to_4d(
|
194 |
+
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
198 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
199 |
+
)
|
200 |
+
|
201 |
+
return attention_mask
|
202 |
+
|
203 |
+
|
204 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
205 |
+
"""
|
206 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
207 |
+
`(batch_size, key_value_length)`
|
208 |
+
|
209 |
+
Args:
|
210 |
+
mask (`torch.Tensor` or `None`):
|
211 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
212 |
+
dtype (`torch.dtype`):
|
213 |
+
The torch dtype the created mask shall have.
|
214 |
+
tgt_len (`int`):
|
215 |
+
The target length or query length the created mask shall have.
|
216 |
+
"""
|
217 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
218 |
+
|
219 |
+
|
220 |
+
def _create_4d_causal_attention_mask(
|
221 |
+
input_shape: Union[torch.Size, Tuple, List],
|
222 |
+
dtype: torch.dtype,
|
223 |
+
device: torch.device,
|
224 |
+
past_key_values_length: int = 0,
|
225 |
+
sliding_window: Optional[int] = None,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
229 |
+
|
230 |
+
Args:
|
231 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
232 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
233 |
+
dtype (`torch.dtype`):
|
234 |
+
The torch dtype the created mask shall have.
|
235 |
+
device (`int`):
|
236 |
+
The torch device the created mask shall have.
|
237 |
+
sliding_window (`int`, *optional*):
|
238 |
+
If the model uses windowed attention, a sliding window should be passed.
|
239 |
+
"""
|
240 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
241 |
+
|
242 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
243 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
244 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
245 |
+
)
|
246 |
+
|
247 |
+
return attention_mask
|
modeling_llama2.py
ADDED
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from functools import partial
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
import copy
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
|
16 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
17 |
+
sys.path.insert(0, dir_path)
|
18 |
+
|
19 |
+
import transformers
|
20 |
+
from transformers.models.llama.modeling_llama import *
|
21 |
+
|
22 |
+
def _get_unpad_data(attention_mask):
|
23 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
24 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
25 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
26 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
27 |
+
return (
|
28 |
+
indices,
|
29 |
+
cu_seqlens,
|
30 |
+
max_seqlen_in_batch,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
from transformers.configuration_utils import PretrainedConfig
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
38 |
+
from .configuration_mplug_owl2 import LlamaConfig
|
39 |
+
|
40 |
+
class MultiwayNetwork(nn.Module):
|
41 |
+
|
42 |
+
def __init__(self, module_provider, num_multiway=2):
|
43 |
+
super(MultiwayNetwork, self).__init__()
|
44 |
+
|
45 |
+
self.multiway = torch.nn.ModuleList([module_provider() for _ in range(num_multiway)])
|
46 |
+
|
47 |
+
def forward(self, hidden_states, multiway_indices):
|
48 |
+
|
49 |
+
if len(self.multiway) == 1:
|
50 |
+
return self.multiway[0](hidden_states)
|
51 |
+
|
52 |
+
output_hidden_states = torch.empty_like(hidden_states)
|
53 |
+
|
54 |
+
for idx, subway in enumerate(self.multiway):
|
55 |
+
local_indices = multiway_indices.eq(idx).nonzero(as_tuple=True)
|
56 |
+
hidden = hidden_states[local_indices].unsqueeze(1).contiguous()
|
57 |
+
if hidden.numel():
|
58 |
+
output = subway(hidden)
|
59 |
+
if isinstance(output, tuple):
|
60 |
+
output = output[0]
|
61 |
+
output = output.squeeze(1)
|
62 |
+
output_hidden_states[local_indices] = output
|
63 |
+
|
64 |
+
return output_hidden_states.contiguous()
|
65 |
+
|
66 |
+
|
67 |
+
class LlamaAttention(nn.Module):
|
68 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
69 |
+
|
70 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
71 |
+
super().__init__()
|
72 |
+
self.config = config
|
73 |
+
self.layer_idx = layer_idx
|
74 |
+
if layer_idx is None:
|
75 |
+
logger.warning_once(
|
76 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
77 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
78 |
+
"when creating this class."
|
79 |
+
)
|
80 |
+
|
81 |
+
self.attention_dropout = config.attention_dropout
|
82 |
+
self.hidden_size = config.hidden_size
|
83 |
+
self.num_heads = config.num_attention_heads
|
84 |
+
self.head_dim = self.hidden_size // self.num_heads
|
85 |
+
self.num_key_value_heads = config.num_key_value_heads
|
86 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
87 |
+
self.max_position_embeddings = config.max_position_embeddings
|
88 |
+
self.rope_theta = config.rope_theta
|
89 |
+
self.is_causal = True
|
90 |
+
|
91 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
92 |
+
raise ValueError(
|
93 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
94 |
+
f" and `num_heads`: {self.num_heads})."
|
95 |
+
)
|
96 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
97 |
+
self.k_proj = MultiwayNetwork(module_provider=partial(
|
98 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
99 |
+
)
|
100 |
+
self.v_proj = MultiwayNetwork(module_provider=partial(
|
101 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
102 |
+
)
|
103 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
104 |
+
self._init_rope()
|
105 |
+
|
106 |
+
def _init_rope(self):
|
107 |
+
if self.config.rope_scaling is None:
|
108 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
109 |
+
self.head_dim,
|
110 |
+
max_position_embeddings=self.max_position_embeddings,
|
111 |
+
base=self.rope_theta,
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
scaling_type = self.config.rope_scaling["type"]
|
115 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
116 |
+
if scaling_type == "linear":
|
117 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
118 |
+
self.head_dim,
|
119 |
+
max_position_embeddings=self.max_position_embeddings,
|
120 |
+
scaling_factor=scaling_factor,
|
121 |
+
base=self.rope_theta,
|
122 |
+
)
|
123 |
+
elif scaling_type == "dynamic":
|
124 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
125 |
+
self.head_dim,
|
126 |
+
max_position_embeddings=self.max_position_embeddings,
|
127 |
+
scaling_factor=scaling_factor,
|
128 |
+
base=self.rope_theta,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
132 |
+
|
133 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
134 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
135 |
+
|
136 |
+
def forward(
|
137 |
+
self,
|
138 |
+
hidden_states: torch.Tensor,
|
139 |
+
modality_indicators: torch.Tensor,
|
140 |
+
attention_mask: Optional[torch.Tensor] = None,
|
141 |
+
position_ids: Optional[torch.LongTensor] = None,
|
142 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
143 |
+
output_attentions: bool = False,
|
144 |
+
use_cache: bool = False,
|
145 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
146 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
147 |
+
bsz, q_len, _ = hidden_states.size()
|
148 |
+
|
149 |
+
query_states = self.q_proj(hidden_states, )
|
150 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
151 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
152 |
+
|
153 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
154 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
155 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
156 |
+
|
157 |
+
kv_seq_len = key_states.shape[-2]
|
158 |
+
if past_key_value is not None:
|
159 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
160 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
161 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
162 |
+
|
163 |
+
if past_key_value is not None:
|
164 |
+
# reuse k, v, self_attention
|
165 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
166 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
167 |
+
|
168 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
169 |
+
|
170 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
171 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
172 |
+
|
173 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
174 |
+
|
175 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
176 |
+
raise ValueError(
|
177 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
178 |
+
f" {attn_weights.size()}"
|
179 |
+
)
|
180 |
+
|
181 |
+
if attention_mask is not None:
|
182 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
183 |
+
raise ValueError(
|
184 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
185 |
+
)
|
186 |
+
attn_weights = attn_weights + attention_mask
|
187 |
+
|
188 |
+
# upcast attention to fp32
|
189 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
190 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
191 |
+
|
192 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
193 |
+
raise ValueError(
|
194 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
195 |
+
f" {attn_output.size()}"
|
196 |
+
)
|
197 |
+
|
198 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
199 |
+
|
200 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
201 |
+
|
202 |
+
attn_output = self.o_proj(attn_output)
|
203 |
+
|
204 |
+
if not output_attentions:
|
205 |
+
attn_weights = None
|
206 |
+
|
207 |
+
return attn_output, attn_weights, past_key_value
|
208 |
+
|
209 |
+
|
210 |
+
class LlamaFlashAttention2(LlamaAttention):
|
211 |
+
"""
|
212 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
213 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
214 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
215 |
+
"""
|
216 |
+
|
217 |
+
def __init__(self, *args, **kwargs):
|
218 |
+
super().__init__(*args, **kwargs)
|
219 |
+
|
220 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
221 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
222 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
223 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
hidden_states: torch.Tensor,
|
228 |
+
modality_indicators: torch.Tensor,
|
229 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
230 |
+
position_ids: Optional[torch.LongTensor] = None,
|
231 |
+
past_key_value: Optional[Cache] = None,
|
232 |
+
output_attentions: bool = False,
|
233 |
+
use_cache: bool = False,
|
234 |
+
**kwargs,
|
235 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
236 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
237 |
+
if "padding_mask" in kwargs:
|
238 |
+
warnings.warn(
|
239 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
240 |
+
)
|
241 |
+
|
242 |
+
# overwrite attention_mask with padding_mask
|
243 |
+
attention_mask = kwargs.pop("padding_mask")
|
244 |
+
|
245 |
+
output_attentions = False
|
246 |
+
|
247 |
+
bsz, q_len, _ = hidden_states.size()
|
248 |
+
|
249 |
+
query_states = self.q_proj(hidden_states)
|
250 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
251 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
252 |
+
|
253 |
+
# Flash attention requires the input to have the shape
|
254 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
255 |
+
# therefore we just need to keep the original shape
|
256 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
257 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
258 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
259 |
+
|
260 |
+
kv_seq_len = key_states.shape[-2]
|
261 |
+
if past_key_value is not None:
|
262 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
263 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
264 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
265 |
+
|
266 |
+
if past_key_value is not None:
|
267 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
268 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
269 |
+
|
270 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
271 |
+
# to be able to avoid many of these transpose/reshape/view.
|
272 |
+
query_states = query_states.transpose(1, 2)
|
273 |
+
key_states = key_states.transpose(1, 2)
|
274 |
+
value_states = value_states.transpose(1, 2)
|
275 |
+
|
276 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
277 |
+
|
278 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
279 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
280 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
281 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
282 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
283 |
+
|
284 |
+
input_dtype = query_states.dtype
|
285 |
+
if input_dtype == torch.float32:
|
286 |
+
if torch.is_autocast_enabled():
|
287 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
288 |
+
# Handle the case where the model is quantized
|
289 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
290 |
+
target_dtype = self.config._pre_quantization_dtype
|
291 |
+
else:
|
292 |
+
target_dtype = self.q_proj.weight.dtype
|
293 |
+
|
294 |
+
logger.warning_once(
|
295 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
296 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
297 |
+
f" {target_dtype}."
|
298 |
+
)
|
299 |
+
|
300 |
+
query_states = query_states.to(target_dtype)
|
301 |
+
key_states = key_states.to(target_dtype)
|
302 |
+
value_states = value_states.to(target_dtype)
|
303 |
+
|
304 |
+
attn_output = self._flash_attention_forward(
|
305 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
306 |
+
)
|
307 |
+
|
308 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
309 |
+
attn_output = self.o_proj(attn_output)
|
310 |
+
|
311 |
+
if not output_attentions:
|
312 |
+
attn_weights = None
|
313 |
+
|
314 |
+
return attn_output, attn_weights, past_key_value
|
315 |
+
|
316 |
+
def _flash_attention_forward(
|
317 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
318 |
+
):
|
319 |
+
"""
|
320 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
321 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
query_states (`torch.Tensor`):
|
325 |
+
Input query states to be passed to Flash Attention API
|
326 |
+
key_states (`torch.Tensor`):
|
327 |
+
Input key states to be passed to Flash Attention API
|
328 |
+
value_states (`torch.Tensor`):
|
329 |
+
Input value states to be passed to Flash Attention API
|
330 |
+
attention_mask (`torch.Tensor`):
|
331 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
332 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
333 |
+
dropout (`int`, *optional*):
|
334 |
+
Attention dropout
|
335 |
+
softmax_scale (`float`, *optional*):
|
336 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
337 |
+
"""
|
338 |
+
if not self._flash_attn_uses_top_left_mask:
|
339 |
+
causal = self.is_causal
|
340 |
+
else:
|
341 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
342 |
+
causal = self.is_causal and query_length != 1
|
343 |
+
|
344 |
+
# Contains at least one padding token in the sequence
|
345 |
+
if attention_mask is not None:
|
346 |
+
batch_size = query_states.shape[0]
|
347 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
348 |
+
query_states, key_states, value_states, attention_mask, query_length
|
349 |
+
)
|
350 |
+
|
351 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
352 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
353 |
+
|
354 |
+
attn_output_unpad = flash_attn_varlen_func(
|
355 |
+
query_states,
|
356 |
+
key_states,
|
357 |
+
value_states,
|
358 |
+
cu_seqlens_q=cu_seqlens_q,
|
359 |
+
cu_seqlens_k=cu_seqlens_k,
|
360 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
361 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
362 |
+
dropout_p=dropout,
|
363 |
+
softmax_scale=softmax_scale,
|
364 |
+
causal=causal,
|
365 |
+
)
|
366 |
+
|
367 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
368 |
+
else:
|
369 |
+
attn_output = flash_attn_func(
|
370 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
371 |
+
)
|
372 |
+
|
373 |
+
return attn_output
|
374 |
+
|
375 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
376 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
377 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
378 |
+
|
379 |
+
key_layer = index_first_axis(
|
380 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
381 |
+
)
|
382 |
+
value_layer = index_first_axis(
|
383 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
384 |
+
)
|
385 |
+
if query_length == kv_seq_len:
|
386 |
+
query_layer = index_first_axis(
|
387 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
388 |
+
)
|
389 |
+
cu_seqlens_q = cu_seqlens_k
|
390 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
391 |
+
indices_q = indices_k
|
392 |
+
elif query_length == 1:
|
393 |
+
max_seqlen_in_batch_q = 1
|
394 |
+
cu_seqlens_q = torch.arange(
|
395 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
396 |
+
) # There is a memcpy here, that is very bad.
|
397 |
+
indices_q = cu_seqlens_q[:-1]
|
398 |
+
query_layer = query_layer.squeeze(1)
|
399 |
+
else:
|
400 |
+
# The -q_len: slice assumes left padding.
|
401 |
+
attention_mask = attention_mask[:, -query_length:]
|
402 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
403 |
+
|
404 |
+
return (
|
405 |
+
query_layer,
|
406 |
+
key_layer,
|
407 |
+
value_layer,
|
408 |
+
indices_q,
|
409 |
+
(cu_seqlens_q, cu_seqlens_k),
|
410 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
411 |
+
)
|
412 |
+
|
413 |
+
|
414 |
+
class LlamaSdpaAttention(LlamaAttention):
|
415 |
+
"""
|
416 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
417 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
418 |
+
SDPA API.
|
419 |
+
"""
|
420 |
+
|
421 |
+
# Adapted from LlamaAttention.forward
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
hidden_states: torch.Tensor,
|
425 |
+
modality_indicators: torch.Tensor,
|
426 |
+
attention_mask: Optional[torch.Tensor] = None,
|
427 |
+
position_ids: Optional[torch.LongTensor] = None,
|
428 |
+
past_key_value: Optional[Cache] = None,
|
429 |
+
output_attentions: bool = False,
|
430 |
+
use_cache: bool = False,
|
431 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
432 |
+
if output_attentions:
|
433 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
434 |
+
logger.warning_once(
|
435 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
436 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
437 |
+
)
|
438 |
+
return super().forward(
|
439 |
+
hidden_states=hidden_states,
|
440 |
+
modality_indicators=modality_indicators,
|
441 |
+
attention_mask=attention_mask,
|
442 |
+
position_ids=position_ids,
|
443 |
+
past_key_value=past_key_value,
|
444 |
+
output_attentions=output_attentions,
|
445 |
+
use_cache=use_cache,
|
446 |
+
)
|
447 |
+
|
448 |
+
bsz, q_len, _ = hidden_states.size()
|
449 |
+
|
450 |
+
query_states = self.q_proj(hidden_states)
|
451 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
452 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
453 |
+
|
454 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
455 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
456 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
457 |
+
|
458 |
+
kv_seq_len = key_states.shape[-2]
|
459 |
+
if past_key_value is not None:
|
460 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
461 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
462 |
+
|
463 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
464 |
+
|
465 |
+
if past_key_value is not None:
|
466 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
467 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
468 |
+
|
469 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
470 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
471 |
+
|
472 |
+
if attention_mask is not None:
|
473 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
474 |
+
raise ValueError(
|
475 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
476 |
+
)
|
477 |
+
|
478 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
479 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
480 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
481 |
+
query_states = query_states.contiguous()
|
482 |
+
key_states = key_states.contiguous()
|
483 |
+
value_states = value_states.contiguous()
|
484 |
+
|
485 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
486 |
+
query_states,
|
487 |
+
key_states,
|
488 |
+
value_states,
|
489 |
+
attn_mask=attention_mask,
|
490 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
491 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
492 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
493 |
+
)
|
494 |
+
|
495 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
496 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
497 |
+
|
498 |
+
attn_output = self.o_proj(attn_output)
|
499 |
+
|
500 |
+
return attn_output, None, past_key_value
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
LLAMA_ATTENTION_CLASSES = {
|
505 |
+
"eager": LlamaAttention,
|
506 |
+
"flash_attention_2": LlamaFlashAttention2,
|
507 |
+
"sdpa": LlamaSdpaAttention,
|
508 |
+
}
|
509 |
+
|
510 |
+
class LlamaDecoderLayer(nn.Module):
|
511 |
+
def __init__(self, config: LlamaConfig, layer_idx):
|
512 |
+
super().__init__()
|
513 |
+
self.hidden_size = config.hidden_size
|
514 |
+
self.self_attn = LlamaAttention(config=config)
|
515 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
516 |
+
self.mlp = LlamaMLP(config)
|
517 |
+
self.input_layernorm = MultiwayNetwork(module_provider=partial(
|
518 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
519 |
+
))
|
520 |
+
self.post_attention_layernorm = MultiwayNetwork(module_provider=partial(
|
521 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
522 |
+
))
|
523 |
+
|
524 |
+
def forward(
|
525 |
+
self,
|
526 |
+
hidden_states: torch.Tensor,
|
527 |
+
modality_indicators: torch.Tensor = None,
|
528 |
+
attention_mask: Optional[torch.Tensor] = None,
|
529 |
+
position_ids: Optional[torch.LongTensor] = None,
|
530 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
531 |
+
output_attentions: Optional[bool] = False,
|
532 |
+
use_cache: Optional[bool] = False,
|
533 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
534 |
+
"""
|
535 |
+
Args:
|
536 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
537 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
538 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
539 |
+
output_attentions (`bool`, *optional*):
|
540 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
541 |
+
returned tensors for more detail.
|
542 |
+
use_cache (`bool`, *optional*):
|
543 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
544 |
+
(see `past_key_values`).
|
545 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
546 |
+
"""
|
547 |
+
|
548 |
+
residual = hidden_states
|
549 |
+
|
550 |
+
hidden_states = self.input_layernorm(hidden_states, modality_indicators)
|
551 |
+
|
552 |
+
# Self Attention
|
553 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
554 |
+
hidden_states=hidden_states,
|
555 |
+
modality_indicators=modality_indicators,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
position_ids=position_ids,
|
558 |
+
past_key_value=past_key_value,
|
559 |
+
output_attentions=output_attentions,
|
560 |
+
use_cache=use_cache,
|
561 |
+
)
|
562 |
+
hidden_states = residual + hidden_states
|
563 |
+
|
564 |
+
# Fully Connected
|
565 |
+
residual = hidden_states
|
566 |
+
hidden_states = self.post_attention_layernorm(hidden_states, modality_indicators)
|
567 |
+
hidden_states = self.mlp(hidden_states)
|
568 |
+
hidden_states = residual + hidden_states
|
569 |
+
|
570 |
+
outputs = (hidden_states,)
|
571 |
+
|
572 |
+
if output_attentions:
|
573 |
+
outputs += (self_attn_weights,)
|
574 |
+
|
575 |
+
if use_cache:
|
576 |
+
outputs += (present_key_value,)
|
577 |
+
|
578 |
+
return outputs
|
579 |
+
|
580 |
+
|
581 |
+
def model_forward(
|
582 |
+
self,
|
583 |
+
input_ids: torch.LongTensor = None,
|
584 |
+
modality_indicators: torch.Tensor = None,
|
585 |
+
attention_mask: Optional[torch.Tensor] = None,
|
586 |
+
position_ids: Optional[torch.LongTensor] = None,
|
587 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
588 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
589 |
+
use_cache: Optional[bool] = None,
|
590 |
+
output_attentions: Optional[bool] = None,
|
591 |
+
output_hidden_states: Optional[bool] = None,
|
592 |
+
return_dict: Optional[bool] = None,
|
593 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
594 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
595 |
+
output_hidden_states = (
|
596 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
597 |
+
)
|
598 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
599 |
+
|
600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
601 |
+
|
602 |
+
# retrieve input_ids and inputs_embeds
|
603 |
+
if input_ids is not None and inputs_embeds is not None:
|
604 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
605 |
+
elif input_ids is not None:
|
606 |
+
batch_size, seq_length = input_ids.shape
|
607 |
+
elif inputs_embeds is not None:
|
608 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
609 |
+
else:
|
610 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
611 |
+
|
612 |
+
seq_length_with_past = seq_length
|
613 |
+
past_key_values_length = 0
|
614 |
+
|
615 |
+
if past_key_values is not None:
|
616 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
617 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
618 |
+
|
619 |
+
if position_ids is None:
|
620 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
621 |
+
position_ids = torch.arange(
|
622 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
623 |
+
)
|
624 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
625 |
+
else:
|
626 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
627 |
+
|
628 |
+
if inputs_embeds is None:
|
629 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
630 |
+
# embed positions
|
631 |
+
if attention_mask is None:
|
632 |
+
attention_mask = torch.ones(
|
633 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
634 |
+
)
|
635 |
+
|
636 |
+
if self._use_flash_attention_2:
|
637 |
+
# 2d mask is passed through the layers
|
638 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
639 |
+
elif self._use_sdpa and not output_attentions:
|
640 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
641 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
642 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
643 |
+
attention_mask,
|
644 |
+
(batch_size, seq_length),
|
645 |
+
inputs_embeds,
|
646 |
+
past_key_values_length,
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
# 4d mask is passed through the layers
|
650 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
651 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
652 |
+
)
|
653 |
+
|
654 |
+
hidden_states = inputs_embeds
|
655 |
+
|
656 |
+
if self.gradient_checkpointing and self.training:
|
657 |
+
if use_cache:
|
658 |
+
logger.warning_once(
|
659 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
660 |
+
)
|
661 |
+
use_cache = False
|
662 |
+
|
663 |
+
# decoder layers
|
664 |
+
all_hidden_states = () if output_hidden_states else None
|
665 |
+
all_self_attns = () if output_attentions else None
|
666 |
+
next_decoder_cache = () if use_cache else None
|
667 |
+
|
668 |
+
for idx, decoder_layer in enumerate(self.layers):
|
669 |
+
if output_hidden_states:
|
670 |
+
all_hidden_states += (hidden_states,)
|
671 |
+
|
672 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
673 |
+
|
674 |
+
if self.gradient_checkpointing and self.training:
|
675 |
+
|
676 |
+
def create_custom_forward(module):
|
677 |
+
def custom_forward(*inputs):
|
678 |
+
# None for past_key_value
|
679 |
+
return module(*inputs, past_key_value, output_attentions)
|
680 |
+
|
681 |
+
return custom_forward
|
682 |
+
|
683 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
684 |
+
create_custom_forward(decoder_layer),
|
685 |
+
hidden_states,
|
686 |
+
modality_indicators,
|
687 |
+
attention_mask,
|
688 |
+
position_ids,
|
689 |
+
)
|
690 |
+
else:
|
691 |
+
layer_outputs = decoder_layer(
|
692 |
+
hidden_states,
|
693 |
+
modality_indicators=modality_indicators,
|
694 |
+
attention_mask=attention_mask,
|
695 |
+
position_ids=position_ids,
|
696 |
+
past_key_value=past_key_value,
|
697 |
+
output_attentions=output_attentions,
|
698 |
+
use_cache=use_cache,
|
699 |
+
)
|
700 |
+
|
701 |
+
hidden_states = layer_outputs[0]
|
702 |
+
|
703 |
+
if use_cache:
|
704 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
705 |
+
|
706 |
+
if output_attentions:
|
707 |
+
all_self_attns += (layer_outputs[1],)
|
708 |
+
|
709 |
+
hidden_states = self.norm(hidden_states)
|
710 |
+
|
711 |
+
# add hidden states from the last decoder layer
|
712 |
+
if output_hidden_states:
|
713 |
+
all_hidden_states += (hidden_states,)
|
714 |
+
|
715 |
+
next_cache = next_decoder_cache if use_cache else None
|
716 |
+
if not return_dict:
|
717 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
718 |
+
return BaseModelOutputWithPast(
|
719 |
+
last_hidden_state=hidden_states,
|
720 |
+
past_key_values=next_cache,
|
721 |
+
hidden_states=all_hidden_states,
|
722 |
+
attentions=all_self_attns,
|
723 |
+
)
|
724 |
+
|
725 |
+
|
726 |
+
def causal_model_forward(
|
727 |
+
self,
|
728 |
+
input_ids: torch.LongTensor = None,
|
729 |
+
modality_indicators: torch.Tensor = None,
|
730 |
+
attention_mask: Optional[torch.Tensor] = None,
|
731 |
+
position_ids: Optional[torch.LongTensor] = None,
|
732 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
733 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
734 |
+
labels: Optional[torch.LongTensor] = None,
|
735 |
+
use_cache: Optional[bool] = None,
|
736 |
+
output_attentions: Optional[bool] = None,
|
737 |
+
output_hidden_states: Optional[bool] = None,
|
738 |
+
return_dict: Optional[bool] = None,
|
739 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
740 |
+
r"""
|
741 |
+
Args:
|
742 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
743 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
744 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
745 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
746 |
+
|
747 |
+
Returns:
|
748 |
+
|
749 |
+
Example:
|
750 |
+
|
751 |
+
```python
|
752 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
753 |
+
|
754 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
755 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
756 |
+
|
757 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
758 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
759 |
+
|
760 |
+
>>> # Generate
|
761 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
762 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
763 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
764 |
+
```"""
|
765 |
+
|
766 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
767 |
+
output_hidden_states = (
|
768 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
769 |
+
)
|
770 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
771 |
+
|
772 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
773 |
+
outputs = self.model(
|
774 |
+
input_ids=input_ids,
|
775 |
+
modality_indicators=modality_indicators,
|
776 |
+
attention_mask=attention_mask,
|
777 |
+
position_ids=position_ids,
|
778 |
+
past_key_values=past_key_values,
|
779 |
+
inputs_embeds=inputs_embeds,
|
780 |
+
use_cache=use_cache,
|
781 |
+
output_attentions=output_attentions,
|
782 |
+
output_hidden_states=output_hidden_states,
|
783 |
+
return_dict=return_dict,
|
784 |
+
)
|
785 |
+
|
786 |
+
hidden_states = outputs[0]
|
787 |
+
if self.config.pretraining_tp > 1:
|
788 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
789 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
790 |
+
logits = torch.cat(logits, dim=-1)
|
791 |
+
else:
|
792 |
+
logits = self.lm_head(hidden_states)
|
793 |
+
logits = logits.float()
|
794 |
+
|
795 |
+
loss = None
|
796 |
+
if labels is not None:
|
797 |
+
# Shift so that tokens < n predict n
|
798 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
799 |
+
shift_labels = labels[..., 1:].contiguous()
|
800 |
+
# Flatten the tokens
|
801 |
+
loss_fct = CrossEntropyLoss()
|
802 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
803 |
+
shift_labels = shift_labels.view(-1)
|
804 |
+
# Enable model parallelism
|
805 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
806 |
+
loss = loss_fct(shift_logits, shift_labels)
|
807 |
+
|
808 |
+
if not return_dict:
|
809 |
+
output = (logits,) + outputs[1:]
|
810 |
+
return (loss,) + output if loss is not None else output
|
811 |
+
|
812 |
+
return CausalLMOutputWithPast(
|
813 |
+
loss=loss,
|
814 |
+
logits=logits,
|
815 |
+
past_key_values=outputs.past_key_values,
|
816 |
+
hidden_states=outputs.hidden_states,
|
817 |
+
attentions=outputs.attentions,
|
818 |
+
)
|
819 |
+
|
820 |
+
def replace_llama_modality_adaptive():
|
821 |
+
transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
|
822 |
+
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
823 |
+
transformers.models.llama.modeling_llama.LlamaFlashAttention2 = LlamaFlashAttention2
|
824 |
+
transformers.models.llama.modeling_llama.LlamaSdpaAttention = LlamaSdpaAttention
|
825 |
+
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
826 |
+
transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
|
827 |
+
transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward
|
828 |
+
|
829 |
+
|
830 |
+
if __name__ == "__main__":
|
831 |
+
replace_llama_modality_adaptive()
|
832 |
+
config = transformers.LlamaConfig.from_pretrained('/cpfs01/shared/public/test/vicuna-7b-v1.5/')
|
833 |
+
model = transformers.LlamaForCausalLM(config)
|
834 |
+
print(model)
|
modeling_mplug_owl2_huggingface.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
import copy
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
|
26 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
27 |
+
sys.path.insert(0, dir_path)
|
28 |
+
|
29 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, LlamaConfig, LlamaModel, LlamaForCausalLM
|
30 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
31 |
+
|
32 |
+
from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig
|
33 |
+
from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel
|
34 |
+
from .modeling_llama2 import replace_llama_modality_adaptive
|
35 |
+
IGNORE_INDEX = -100
|
36 |
+
IMAGE_TOKEN_INDEX = -200
|
37 |
+
DEFAULT_IMAGE_TOKEN = "<|image|>"
|
38 |
+
from icecream import ic
|
39 |
+
|
40 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
41 |
+
prompt_chunks = [tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
|
42 |
+
|
43 |
+
def insert_separator(X, sep):
|
44 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
45 |
+
|
46 |
+
input_ids = []
|
47 |
+
offset = 0
|
48 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
49 |
+
offset = 1
|
50 |
+
input_ids.append(prompt_chunks[0][0])
|
51 |
+
|
52 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
53 |
+
input_ids.extend(x[offset:])
|
54 |
+
|
55 |
+
if return_tensors is not None:
|
56 |
+
if return_tensors == 'pt':
|
57 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
58 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
59 |
+
return input_ids
|
60 |
+
|
61 |
+
def expand2square(pil_img, background_color):
|
62 |
+
from PIL import Image
|
63 |
+
width, height = pil_img.size
|
64 |
+
if width == height:
|
65 |
+
return pil_img
|
66 |
+
elif width > height:
|
67 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
68 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
69 |
+
return result
|
70 |
+
else:
|
71 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
72 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
73 |
+
return result
|
74 |
+
|
75 |
+
class MPLUGOwl2MetaModel:
|
76 |
+
def __init__(self, config):
|
77 |
+
super(MPLUGOwl2MetaModel, self).__init__(config)
|
78 |
+
self.vision_model = MplugOwlVisionModel(
|
79 |
+
MplugOwlVisionConfig(**config.visual_config["visual_model"])
|
80 |
+
)
|
81 |
+
self.visual_abstractor = MplugOwlVisualAbstractorModel(
|
82 |
+
MplugOwlVisualAbstractorConfig(**config.visual_config["visual_abstractor"]), config.hidden_size
|
83 |
+
)
|
84 |
+
|
85 |
+
def get_vision_tower(self):
|
86 |
+
vision_model = getattr(self, 'vision_model', None)
|
87 |
+
if type(vision_model) is list:
|
88 |
+
vision_model = vision_model[0]
|
89 |
+
return vision_model
|
90 |
+
|
91 |
+
def get_visual_abstractor(self):
|
92 |
+
visual_abstractor = getattr(self, 'visual_abstractor', None)
|
93 |
+
if type(visual_abstractor) is list:
|
94 |
+
visual_abstractor = visual_abstractor[0]
|
95 |
+
return visual_abstractor
|
96 |
+
|
97 |
+
|
98 |
+
class MPLUGOwl2MetaForCausalLM(ABC):
|
99 |
+
@abstractmethod
|
100 |
+
def get_model(self):
|
101 |
+
pass
|
102 |
+
|
103 |
+
def encode_images(self, images):
|
104 |
+
image_features = self.get_model().vision_model(images).last_hidden_state
|
105 |
+
image_features = self.get_model().visual_abstractor(encoder_hidden_states=image_features).last_hidden_state
|
106 |
+
return image_features
|
107 |
+
|
108 |
+
def prepare_inputs_labels_for_multimodal(
|
109 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
110 |
+
):
|
111 |
+
if images is None or input_ids.shape[1] == 1:
|
112 |
+
if past_key_values is not None and images is not None and input_ids.shape[1] == 1:
|
113 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
|
114 |
+
multiway_indices = torch.zeros_like(input_ids).long().to(self.device)
|
115 |
+
return input_ids, multiway_indices, attention_mask, past_key_values, None, labels
|
116 |
+
|
117 |
+
if type(images) is list or images.ndim == 5:
|
118 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
119 |
+
image_features = self.encode_images(concat_images)
|
120 |
+
split_sizes = [image.shape[0] for image in images]
|
121 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
122 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
123 |
+
else:
|
124 |
+
image_features = self.encode_images(images)
|
125 |
+
|
126 |
+
new_input_embeds = []
|
127 |
+
new_modality_indicators = []
|
128 |
+
new_labels = [] if labels is not None else None
|
129 |
+
cur_image_idx = 0
|
130 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
131 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
132 |
+
# multimodal LLM, but the current sample is not multimodal
|
133 |
+
# FIXME: this is a hacky fix, for deepspeed zero3 to work
|
134 |
+
half_len = cur_input_ids.shape[0] // 2
|
135 |
+
cur_image_features = image_features[cur_image_idx]
|
136 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
|
137 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
|
138 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
|
139 |
+
new_input_embeds.append(cur_input_embeds)
|
140 |
+
|
141 |
+
cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device)
|
142 |
+
new_modality_indicators.append(cur_modality_indicators)
|
143 |
+
if labels is not None:
|
144 |
+
new_labels.append(labels[batch_idx])
|
145 |
+
cur_image_idx += 1
|
146 |
+
continue
|
147 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
148 |
+
cur_new_input_embeds = []
|
149 |
+
cur_modality_indicators = []
|
150 |
+
if labels is not None:
|
151 |
+
cur_labels = labels[batch_idx]
|
152 |
+
cur_new_labels = []
|
153 |
+
assert cur_labels.shape == cur_input_ids.shape
|
154 |
+
while image_token_indices.numel() > 0:
|
155 |
+
cur_image_features = image_features[cur_image_idx]
|
156 |
+
image_token_start = image_token_indices[0]
|
157 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
|
158 |
+
cur_new_input_embeds.append(cur_image_features)
|
159 |
+
|
160 |
+
# Add modality indicator
|
161 |
+
assert image_token_start == len(cur_input_ids[:image_token_start])
|
162 |
+
cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long())
|
163 |
+
cur_modality_indicators.append(torch.ones(len(cur_image_features)).long())
|
164 |
+
|
165 |
+
if labels is not None:
|
166 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
167 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
168 |
+
cur_labels = cur_labels[image_token_start+1:]
|
169 |
+
cur_image_idx += 1
|
170 |
+
cur_input_ids = cur_input_ids[image_token_start+1:]
|
171 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
172 |
+
if cur_input_ids.numel() > 0:
|
173 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
|
174 |
+
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long())
|
175 |
+
if labels is not None:
|
176 |
+
cur_new_labels.append(cur_labels)
|
177 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
178 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
179 |
+
new_input_embeds.append(cur_new_input_embeds)
|
180 |
+
|
181 |
+
# Modality
|
182 |
+
cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators]
|
183 |
+
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0)
|
184 |
+
new_modality_indicators.append(cur_modality_indicators)
|
185 |
+
|
186 |
+
|
187 |
+
if labels is not None:
|
188 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
189 |
+
new_labels.append(cur_new_labels)
|
190 |
+
|
191 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
192 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
193 |
+
|
194 |
+
# Embedding
|
195 |
+
new_input_embeds_align = []
|
196 |
+
for cur_new_embed in new_input_embeds:
|
197 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
198 |
+
new_input_embeds_align.append(cur_new_embed)
|
199 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
200 |
+
|
201 |
+
# Modality
|
202 |
+
new_modality_indicators_align = []
|
203 |
+
for cur_modality_indicator in new_modality_indicators:
|
204 |
+
cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0)
|
205 |
+
new_modality_indicators_align.append(cur_new_embed)
|
206 |
+
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0)
|
207 |
+
|
208 |
+
# Label
|
209 |
+
if labels is not None:
|
210 |
+
new_labels_align = []
|
211 |
+
_new_labels = new_labels
|
212 |
+
for cur_new_label in new_labels:
|
213 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
214 |
+
new_labels_align.append(cur_new_label)
|
215 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
216 |
+
|
217 |
+
# Attention Mask
|
218 |
+
if attention_mask is not None:
|
219 |
+
new_attention_mask = []
|
220 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
221 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
222 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
223 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
224 |
+
new_attention_mask.append(cur_new_attention_mask)
|
225 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
226 |
+
assert attention_mask.shape == new_labels.shape
|
227 |
+
else:
|
228 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
229 |
+
new_modality_indicators = torch.stack(new_modality_indicators, dim=0)
|
230 |
+
if labels is not None:
|
231 |
+
new_labels = torch.stack(new_labels, dim=0)
|
232 |
+
|
233 |
+
if attention_mask is not None:
|
234 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
235 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
236 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
237 |
+
return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel):
|
242 |
+
config_class = MPLUGOwl2Config
|
243 |
+
|
244 |
+
def __init__(self, config: MPLUGOwl2Config):
|
245 |
+
super(MPLUGOwl2LlamaModel, self).__init__(config)
|
246 |
+
|
247 |
+
|
248 |
+
class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM):
|
249 |
+
config_class = MPLUGOwl2Config
|
250 |
+
|
251 |
+
def __init__(self, config):
|
252 |
+
super(LlamaForCausalLM, self).__init__(config)
|
253 |
+
self.model = MPLUGOwl2LlamaModel(config)
|
254 |
+
|
255 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
|
256 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(config._name_or_path)
|
257 |
+
|
258 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
259 |
+
self.preferential_ids_ = [id_[1] for id_ in self.tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
|
260 |
+
|
261 |
+
# Initialize weights and apply final processing
|
262 |
+
self.post_init()
|
263 |
+
|
264 |
+
|
265 |
+
def get_model(self):
|
266 |
+
return self.model
|
267 |
+
|
268 |
+
def score(self, images,
|
269 |
+
task_: str = "quality",
|
270 |
+
input_: str = "image",
|
271 |
+
):
|
272 |
+
if not hasattr(self, "weight_tensor"):
|
273 |
+
self.weight_tensor = torch.Tensor([5.,4.,3.,2.,1.]).half().to(self.device)
|
274 |
+
prompt = "USER: How would you rate the {} of this {}?\n<|image|>\nASSISTANT: The {} of the {} is".format(task_, input_, input_, task_)
|
275 |
+
if input_ == "image":
|
276 |
+
images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
|
277 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
278 |
+
with torch.inference_mode():
|
279 |
+
image_tensor = self.image_processor.preprocess(images, return_tensors="pt")["pixel_values"].half().to(self.device)
|
280 |
+
output_logits = self(input_ids.repeat(image_tensor.shape[0], 1),
|
281 |
+
images=image_tensor)["logits"][:,-1, self.preferential_ids_]
|
282 |
+
return torch.softmax(output_logits, -1) @ self.weight_tensor
|
283 |
+
else:
|
284 |
+
video = [[expand2square(frame, tuple(int(x*255) for x in self.image_processor.image_mean)) for frame in vid] for vid in images]
|
285 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
286 |
+
with torch.inference_mode():
|
287 |
+
video_tensors = [self.image_processor.preprocess(vid, return_tensors="pt")["pixel_values"].half().to(self.model.device) for vid in video]
|
288 |
+
output_logits = self(input_ids.repeat(len(video_tensors), 1),
|
289 |
+
images=video_tensors)["logits"][:,-1, self.preferential_ids_]
|
290 |
+
return torch.softmax(output_logits, -1) @ self.weight_tensor
|
291 |
+
|
292 |
+
def forward(
|
293 |
+
self,
|
294 |
+
input_ids: torch.LongTensor = None,
|
295 |
+
# modality_indicators: torch.LongTensor = None,
|
296 |
+
attention_mask: Optional[torch.Tensor] = None,
|
297 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
298 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
299 |
+
labels: Optional[torch.LongTensor] = None,
|
300 |
+
use_cache: Optional[bool] = None,
|
301 |
+
output_attentions: Optional[bool] = None,
|
302 |
+
output_hidden_states: Optional[bool] = None,
|
303 |
+
images: Optional[torch.FloatTensor] = None,
|
304 |
+
return_dict: Optional[bool] = None,
|
305 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
306 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
307 |
+
output_hidden_states = (
|
308 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
309 |
+
)
|
310 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
311 |
+
input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \
|
312 |
+
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
313 |
+
|
314 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
315 |
+
outputs = self.model(
|
316 |
+
input_ids=input_ids,
|
317 |
+
modality_indicators=modality_indicators,
|
318 |
+
attention_mask=attention_mask,
|
319 |
+
past_key_values=past_key_values,
|
320 |
+
inputs_embeds=inputs_embeds,
|
321 |
+
use_cache=use_cache,
|
322 |
+
output_attentions=output_attentions,
|
323 |
+
output_hidden_states=output_hidden_states,
|
324 |
+
return_dict=return_dict
|
325 |
+
)
|
326 |
+
|
327 |
+
hidden_states = outputs[0]
|
328 |
+
logits = self.lm_head(hidden_states)
|
329 |
+
|
330 |
+
loss = None
|
331 |
+
if labels is not None:
|
332 |
+
# Shift so that tokens < n predict n
|
333 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
334 |
+
shift_labels = labels[..., 1:].contiguous()
|
335 |
+
# Flatten the tokens
|
336 |
+
loss_fct = CrossEntropyLoss()
|
337 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
338 |
+
shift_labels = shift_labels.view(-1)
|
339 |
+
# Enable model/pipeline parallelism
|
340 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
341 |
+
loss = loss_fct(shift_logits, shift_labels)
|
342 |
+
|
343 |
+
if not return_dict:
|
344 |
+
output = (logits,) + outputs[1:]
|
345 |
+
return (loss,) + output if loss is not None else output
|
346 |
+
|
347 |
+
return CausalLMOutputWithPast(
|
348 |
+
loss=loss,
|
349 |
+
logits=logits,
|
350 |
+
past_key_values=outputs.past_key_values,
|
351 |
+
hidden_states=outputs.hidden_states,
|
352 |
+
attentions=outputs.attentions,
|
353 |
+
)
|
354 |
+
|
355 |
+
def prepare_inputs_for_generation(
|
356 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
357 |
+
):
|
358 |
+
if past_key_values:
|
359 |
+
input_ids = input_ids[:, -1:]
|
360 |
+
|
361 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
362 |
+
if inputs_embeds is not None and past_key_values is None:
|
363 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
364 |
+
else:
|
365 |
+
model_inputs = {"input_ids": input_ids}
|
366 |
+
|
367 |
+
model_inputs.update(
|
368 |
+
{
|
369 |
+
"past_key_values": past_key_values,
|
370 |
+
"use_cache": kwargs.get("use_cache"),
|
371 |
+
"attention_mask": attention_mask,
|
372 |
+
"images": kwargs.get("images", None),
|
373 |
+
}
|
374 |
+
)
|
375 |
+
return model_inputs
|
376 |
+
|
377 |
+
AutoConfig.register("mplug_owl2", MPLUGOwl2Config)
|
378 |
+
AutoModelForCausalLM.register(MPLUGOwl2Config, MPLUGOwl2LlamaForCausalLM)
|
379 |
+
|
380 |
+
replace_llama_modality_adaptive()
|
381 |
+
|
382 |
+
if __name__ == "__main__":
|
383 |
+
config = MPLUGOwl2Config.from_pretrained('zhiyuanyou/DeQA-Score-Mix3')
|
384 |
+
from icecream import ic
|
385 |
+
# config = MPLUGOwl2Config()
|
386 |
+
model = AutoModelForCausalLM(config)
|
387 |
+
|
388 |
+
images = torch.randn(2, 3, 448, 448)
|
389 |
+
input_ids = torch.cat([
|
390 |
+
torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long()
|
391 |
+
], dim=0).unsqueeze(0)
|
392 |
+
labels = input_ids.clone()
|
393 |
+
labels[labels < 0] = -100
|
394 |
+
|
395 |
+
# image_feature = model.encode_images(images)
|
396 |
+
# ic(image_feature.shape)
|
397 |
+
|
398 |
+
output = model(images=images, input_ids=input_ids, labels=labels)
|
399 |
+
ic(output.loss)
|
400 |
+
ic(output.logits.shape)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 448
|
19 |
+
}
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16409100288
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00004-of-00004.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
8 |
+
"model.layers.0.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
9 |
+
"model.layers.0.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
13 |
+
"model.layers.0.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
14 |
+
"model.layers.0.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
15 |
+
"model.layers.0.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
16 |
+
"model.layers.0.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
17 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
19 |
+
"model.layers.0.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
20 |
+
"model.layers.0.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
21 |
+
"model.layers.1.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
22 |
+
"model.layers.1.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
23 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
24 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
25 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
26 |
+
"model.layers.1.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
27 |
+
"model.layers.1.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
28 |
+
"model.layers.1.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
29 |
+
"model.layers.1.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
30 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
31 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
32 |
+
"model.layers.1.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
33 |
+
"model.layers.1.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
34 |
+
"model.layers.10.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
35 |
+
"model.layers.10.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
36 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
37 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
38 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
39 |
+
"model.layers.10.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
40 |
+
"model.layers.10.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
41 |
+
"model.layers.10.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
42 |
+
"model.layers.10.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
43 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
44 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
45 |
+
"model.layers.10.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
46 |
+
"model.layers.10.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
47 |
+
"model.layers.11.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
48 |
+
"model.layers.11.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
49 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
50 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
51 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
52 |
+
"model.layers.11.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
53 |
+
"model.layers.11.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
54 |
+
"model.layers.11.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
55 |
+
"model.layers.11.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
56 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
57 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
58 |
+
"model.layers.11.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
59 |
+
"model.layers.11.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
60 |
+
"model.layers.12.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
61 |
+
"model.layers.12.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
62 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
63 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
64 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
65 |
+
"model.layers.12.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
66 |
+
"model.layers.12.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
67 |
+
"model.layers.12.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
68 |
+
"model.layers.12.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
69 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
70 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
71 |
+
"model.layers.12.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
72 |
+
"model.layers.12.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
73 |
+
"model.layers.13.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
74 |
+
"model.layers.13.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
75 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
76 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
77 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
78 |
+
"model.layers.13.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
79 |
+
"model.layers.13.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
80 |
+
"model.layers.13.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
81 |
+
"model.layers.13.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
82 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
83 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
84 |
+
"model.layers.13.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
85 |
+
"model.layers.13.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
86 |
+
"model.layers.14.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
87 |
+
"model.layers.14.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
88 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
89 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
90 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
91 |
+
"model.layers.14.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
92 |
+
"model.layers.14.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
93 |
+
"model.layers.14.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
94 |
+
"model.layers.14.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
95 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
96 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
97 |
+
"model.layers.14.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
98 |
+
"model.layers.14.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
99 |
+
"model.layers.15.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
100 |
+
"model.layers.15.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
101 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
102 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
103 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
104 |
+
"model.layers.15.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
105 |
+
"model.layers.15.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
106 |
+
"model.layers.15.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
107 |
+
"model.layers.15.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
108 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
109 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
110 |
+
"model.layers.15.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
111 |
+
"model.layers.15.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
112 |
+
"model.layers.16.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
113 |
+
"model.layers.16.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
114 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
115 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
116 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
117 |
+
"model.layers.16.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
118 |
+
"model.layers.16.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
119 |
+
"model.layers.16.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
120 |
+
"model.layers.16.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
121 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
122 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
123 |
+
"model.layers.16.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
124 |
+
"model.layers.16.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
125 |
+
"model.layers.17.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
126 |
+
"model.layers.17.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
127 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
128 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
129 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
130 |
+
"model.layers.17.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
131 |
+
"model.layers.17.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
132 |
+
"model.layers.17.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
133 |
+
"model.layers.17.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
134 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
135 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
136 |
+
"model.layers.17.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
137 |
+
"model.layers.17.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
138 |
+
"model.layers.18.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
139 |
+
"model.layers.18.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
140 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
141 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
142 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
143 |
+
"model.layers.18.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
144 |
+
"model.layers.18.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
145 |
+
"model.layers.18.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
146 |
+
"model.layers.18.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
147 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
148 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
149 |
+
"model.layers.18.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
150 |
+
"model.layers.18.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
151 |
+
"model.layers.19.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
152 |
+
"model.layers.19.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
153 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
154 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
155 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
156 |
+
"model.layers.19.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
157 |
+
"model.layers.19.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
158 |
+
"model.layers.19.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
159 |
+
"model.layers.19.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
160 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
161 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
162 |
+
"model.layers.19.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
163 |
+
"model.layers.19.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
164 |
+
"model.layers.2.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
165 |
+
"model.layers.2.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
166 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
167 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
168 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
169 |
+
"model.layers.2.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
170 |
+
"model.layers.2.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
171 |
+
"model.layers.2.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
172 |
+
"model.layers.2.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
173 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
174 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
175 |
+
"model.layers.2.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
176 |
+
"model.layers.2.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
177 |
+
"model.layers.20.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
178 |
+
"model.layers.20.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
179 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
180 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
181 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
182 |
+
"model.layers.20.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
183 |
+
"model.layers.20.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
184 |
+
"model.layers.20.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
185 |
+
"model.layers.20.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
186 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
187 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
188 |
+
"model.layers.20.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
189 |
+
"model.layers.20.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
190 |
+
"model.layers.21.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
191 |
+
"model.layers.21.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
192 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
193 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
194 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
195 |
+
"model.layers.21.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
196 |
+
"model.layers.21.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
197 |
+
"model.layers.21.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
198 |
+
"model.layers.21.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
199 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
200 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
201 |
+
"model.layers.21.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
202 |
+
"model.layers.21.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
203 |
+
"model.layers.22.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
204 |
+
"model.layers.22.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
205 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
206 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
207 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
208 |
+
"model.layers.22.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
209 |
+
"model.layers.22.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
210 |
+
"model.layers.22.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
211 |
+
"model.layers.22.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
212 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
213 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
214 |
+
"model.layers.22.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
215 |
+
"model.layers.22.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
216 |
+
"model.layers.23.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
217 |
+
"model.layers.23.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
218 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
219 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
220 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
221 |
+
"model.layers.23.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
222 |
+
"model.layers.23.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
223 |
+
"model.layers.23.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
224 |
+
"model.layers.23.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
225 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
226 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
227 |
+
"model.layers.23.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
228 |
+
"model.layers.23.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
229 |
+
"model.layers.24.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
230 |
+
"model.layers.24.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
231 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
232 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
233 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
234 |
+
"model.layers.24.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
235 |
+
"model.layers.24.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
236 |
+
"model.layers.24.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
237 |
+
"model.layers.24.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
238 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
239 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
240 |
+
"model.layers.24.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
241 |
+
"model.layers.24.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
242 |
+
"model.layers.25.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
243 |
+
"model.layers.25.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
244 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
245 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
246 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
247 |
+
"model.layers.25.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
248 |
+
"model.layers.25.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
249 |
+
"model.layers.25.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
250 |
+
"model.layers.25.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
251 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
252 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
253 |
+
"model.layers.25.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
254 |
+
"model.layers.25.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
255 |
+
"model.layers.26.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
256 |
+
"model.layers.26.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
257 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
258 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
259 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
260 |
+
"model.layers.26.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
261 |
+
"model.layers.26.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
262 |
+
"model.layers.26.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
263 |
+
"model.layers.26.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
264 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
265 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
266 |
+
"model.layers.26.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
267 |
+
"model.layers.26.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
268 |
+
"model.layers.27.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
269 |
+
"model.layers.27.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
270 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
271 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
272 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
273 |
+
"model.layers.27.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
274 |
+
"model.layers.27.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
275 |
+
"model.layers.27.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
276 |
+
"model.layers.27.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
277 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
278 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
279 |
+
"model.layers.27.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
280 |
+
"model.layers.27.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
281 |
+
"model.layers.28.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
282 |
+
"model.layers.28.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
283 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
284 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
285 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
286 |
+
"model.layers.28.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
287 |
+
"model.layers.28.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
288 |
+
"model.layers.28.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
289 |
+
"model.layers.28.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
290 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
291 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
292 |
+
"model.layers.28.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
293 |
+
"model.layers.28.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
294 |
+
"model.layers.29.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
295 |
+
"model.layers.29.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
296 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
297 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
298 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
299 |
+
"model.layers.29.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
300 |
+
"model.layers.29.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
301 |
+
"model.layers.29.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
302 |
+
"model.layers.29.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
303 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
304 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
305 |
+
"model.layers.29.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
306 |
+
"model.layers.29.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
307 |
+
"model.layers.3.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
308 |
+
"model.layers.3.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
309 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
310 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
311 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
312 |
+
"model.layers.3.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
313 |
+
"model.layers.3.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
314 |
+
"model.layers.3.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
315 |
+
"model.layers.3.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
316 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
317 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
318 |
+
"model.layers.3.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
319 |
+
"model.layers.3.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
320 |
+
"model.layers.30.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
321 |
+
"model.layers.30.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
322 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
323 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
324 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
325 |
+
"model.layers.30.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
326 |
+
"model.layers.30.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
327 |
+
"model.layers.30.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
328 |
+
"model.layers.30.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
329 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
330 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
331 |
+
"model.layers.30.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
332 |
+
"model.layers.30.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
333 |
+
"model.layers.31.input_layernorm.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
334 |
+
"model.layers.31.input_layernorm.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
335 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
336 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
|
337 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
338 |
+
"model.layers.31.post_attention_layernorm.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
339 |
+
"model.layers.31.post_attention_layernorm.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
340 |
+
"model.layers.31.self_attn.k_proj.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
341 |
+
"model.layers.31.self_attn.k_proj.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
342 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
343 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
344 |
+
"model.layers.31.self_attn.v_proj.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
345 |
+
"model.layers.31.self_attn.v_proj.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
346 |
+
"model.layers.4.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
347 |
+
"model.layers.4.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
348 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
349 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
350 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
351 |
+
"model.layers.4.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
354 |
+
"model.layers.4.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
355 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
356 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
358 |
+
"model.layers.4.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
359 |
+
"model.layers.5.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
360 |
+
"model.layers.5.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
361 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
362 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
363 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
364 |
+
"model.layers.5.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
365 |
+
"model.layers.5.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
366 |
+
"model.layers.5.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
367 |
+
"model.layers.5.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
368 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
369 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
370 |
+
"model.layers.5.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
371 |
+
"model.layers.5.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
372 |
+
"model.layers.6.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
373 |
+
"model.layers.6.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
374 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
375 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
376 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
377 |
+
"model.layers.6.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
378 |
+
"model.layers.6.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
379 |
+
"model.layers.6.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
380 |
+
"model.layers.6.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
381 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
382 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
383 |
+
"model.layers.6.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
384 |
+
"model.layers.6.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
385 |
+
"model.layers.7.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
386 |
+
"model.layers.7.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
387 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
388 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
389 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
390 |
+
"model.layers.7.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
391 |
+
"model.layers.7.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
392 |
+
"model.layers.7.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
393 |
+
"model.layers.7.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
394 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
395 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
396 |
+
"model.layers.7.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
397 |
+
"model.layers.7.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
398 |
+
"model.layers.8.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
399 |
+
"model.layers.8.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
400 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
401 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
402 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
403 |
+
"model.layers.8.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
404 |
+
"model.layers.8.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
405 |
+
"model.layers.8.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
406 |
+
"model.layers.8.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
407 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
408 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
409 |
+
"model.layers.8.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
410 |
+
"model.layers.8.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
411 |
+
"model.layers.9.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
412 |
+
"model.layers.9.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
413 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
414 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
415 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
416 |
+
"model.layers.9.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
417 |
+
"model.layers.9.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
418 |
+
"model.layers.9.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
419 |
+
"model.layers.9.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
420 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
421 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
422 |
+
"model.layers.9.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
423 |
+
"model.layers.9.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
424 |
+
"model.norm.weight": "pytorch_model-00004-of-00004.bin",
|
425 |
+
"model.vision_model.embeddings.cls_token": "pytorch_model-00004-of-00004.bin",
|
426 |
+
"model.vision_model.embeddings.patch_embed.weight": "pytorch_model-00004-of-00004.bin",
|
427 |
+
"model.vision_model.embeddings.position_embedding": "pytorch_model-00004-of-00004.bin",
|
428 |
+
"model.vision_model.embeddings.pre_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
429 |
+
"model.vision_model.embeddings.pre_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
430 |
+
"model.vision_model.encoder.layers.0.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
431 |
+
"model.vision_model.encoder.layers.0.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
432 |
+
"model.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
433 |
+
"model.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
434 |
+
"model.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
435 |
+
"model.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
436 |
+
"model.vision_model.encoder.layers.0.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
437 |
+
"model.vision_model.encoder.layers.0.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
438 |
+
"model.vision_model.encoder.layers.0.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
439 |
+
"model.vision_model.encoder.layers.0.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
440 |
+
"model.vision_model.encoder.layers.0.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
441 |
+
"model.vision_model.encoder.layers.0.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
442 |
+
"model.vision_model.encoder.layers.1.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
443 |
+
"model.vision_model.encoder.layers.1.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
444 |
+
"model.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
445 |
+
"model.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
446 |
+
"model.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
447 |
+
"model.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
448 |
+
"model.vision_model.encoder.layers.1.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
449 |
+
"model.vision_model.encoder.layers.1.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
450 |
+
"model.vision_model.encoder.layers.1.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
451 |
+
"model.vision_model.encoder.layers.1.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
452 |
+
"model.vision_model.encoder.layers.1.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
453 |
+
"model.vision_model.encoder.layers.1.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
454 |
+
"model.vision_model.encoder.layers.10.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
455 |
+
"model.vision_model.encoder.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
456 |
+
"model.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
457 |
+
"model.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
458 |
+
"model.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
459 |
+
"model.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
460 |
+
"model.vision_model.encoder.layers.10.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
461 |
+
"model.vision_model.encoder.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
462 |
+
"model.vision_model.encoder.layers.10.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
463 |
+
"model.vision_model.encoder.layers.10.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
464 |
+
"model.vision_model.encoder.layers.10.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
465 |
+
"model.vision_model.encoder.layers.10.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
466 |
+
"model.vision_model.encoder.layers.11.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
467 |
+
"model.vision_model.encoder.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
468 |
+
"model.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
469 |
+
"model.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
470 |
+
"model.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
471 |
+
"model.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
472 |
+
"model.vision_model.encoder.layers.11.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
473 |
+
"model.vision_model.encoder.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
474 |
+
"model.vision_model.encoder.layers.11.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
475 |
+
"model.vision_model.encoder.layers.11.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
476 |
+
"model.vision_model.encoder.layers.11.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
477 |
+
"model.vision_model.encoder.layers.11.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
478 |
+
"model.vision_model.encoder.layers.12.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
479 |
+
"model.vision_model.encoder.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
480 |
+
"model.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
481 |
+
"model.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
482 |
+
"model.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
483 |
+
"model.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
484 |
+
"model.vision_model.encoder.layers.12.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
485 |
+
"model.vision_model.encoder.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
486 |
+
"model.vision_model.encoder.layers.12.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
487 |
+
"model.vision_model.encoder.layers.12.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
488 |
+
"model.vision_model.encoder.layers.12.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
489 |
+
"model.vision_model.encoder.layers.12.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
490 |
+
"model.vision_model.encoder.layers.13.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
491 |
+
"model.vision_model.encoder.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
492 |
+
"model.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
493 |
+
"model.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
494 |
+
"model.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
495 |
+
"model.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
496 |
+
"model.vision_model.encoder.layers.13.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
497 |
+
"model.vision_model.encoder.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
498 |
+
"model.vision_model.encoder.layers.13.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
499 |
+
"model.vision_model.encoder.layers.13.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
500 |
+
"model.vision_model.encoder.layers.13.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
501 |
+
"model.vision_model.encoder.layers.13.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
502 |
+
"model.vision_model.encoder.layers.14.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
503 |
+
"model.vision_model.encoder.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
504 |
+
"model.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
505 |
+
"model.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
506 |
+
"model.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
507 |
+
"model.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
508 |
+
"model.vision_model.encoder.layers.14.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
509 |
+
"model.vision_model.encoder.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
510 |
+
"model.vision_model.encoder.layers.14.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
511 |
+
"model.vision_model.encoder.layers.14.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
512 |
+
"model.vision_model.encoder.layers.14.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
513 |
+
"model.vision_model.encoder.layers.14.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
514 |
+
"model.vision_model.encoder.layers.15.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
515 |
+
"model.vision_model.encoder.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
516 |
+
"model.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
517 |
+
"model.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
518 |
+
"model.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
519 |
+
"model.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
520 |
+
"model.vision_model.encoder.layers.15.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
521 |
+
"model.vision_model.encoder.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
522 |
+
"model.vision_model.encoder.layers.15.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
523 |
+
"model.vision_model.encoder.layers.15.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
524 |
+
"model.vision_model.encoder.layers.15.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
525 |
+
"model.vision_model.encoder.layers.15.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
526 |
+
"model.vision_model.encoder.layers.16.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
527 |
+
"model.vision_model.encoder.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
528 |
+
"model.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
529 |
+
"model.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
530 |
+
"model.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
531 |
+
"model.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
532 |
+
"model.vision_model.encoder.layers.16.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
533 |
+
"model.vision_model.encoder.layers.16.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
534 |
+
"model.vision_model.encoder.layers.16.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
535 |
+
"model.vision_model.encoder.layers.16.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
536 |
+
"model.vision_model.encoder.layers.16.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
537 |
+
"model.vision_model.encoder.layers.16.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
538 |
+
"model.vision_model.encoder.layers.17.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
539 |
+
"model.vision_model.encoder.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
540 |
+
"model.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
541 |
+
"model.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
542 |
+
"model.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
543 |
+
"model.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
544 |
+
"model.vision_model.encoder.layers.17.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
545 |
+
"model.vision_model.encoder.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
546 |
+
"model.vision_model.encoder.layers.17.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
547 |
+
"model.vision_model.encoder.layers.17.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
548 |
+
"model.vision_model.encoder.layers.17.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
549 |
+
"model.vision_model.encoder.layers.17.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
550 |
+
"model.vision_model.encoder.layers.18.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
551 |
+
"model.vision_model.encoder.layers.18.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
552 |
+
"model.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
553 |
+
"model.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
554 |
+
"model.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
555 |
+
"model.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
556 |
+
"model.vision_model.encoder.layers.18.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
557 |
+
"model.vision_model.encoder.layers.18.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
558 |
+
"model.vision_model.encoder.layers.18.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
559 |
+
"model.vision_model.encoder.layers.18.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
560 |
+
"model.vision_model.encoder.layers.18.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
561 |
+
"model.vision_model.encoder.layers.18.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
562 |
+
"model.vision_model.encoder.layers.19.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
563 |
+
"model.vision_model.encoder.layers.19.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
564 |
+
"model.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
565 |
+
"model.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
566 |
+
"model.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
567 |
+
"model.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
568 |
+
"model.vision_model.encoder.layers.19.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
569 |
+
"model.vision_model.encoder.layers.19.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
570 |
+
"model.vision_model.encoder.layers.19.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
571 |
+
"model.vision_model.encoder.layers.19.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
572 |
+
"model.vision_model.encoder.layers.19.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
573 |
+
"model.vision_model.encoder.layers.19.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
574 |
+
"model.vision_model.encoder.layers.2.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
575 |
+
"model.vision_model.encoder.layers.2.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
576 |
+
"model.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
577 |
+
"model.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
578 |
+
"model.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
579 |
+
"model.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
580 |
+
"model.vision_model.encoder.layers.2.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
581 |
+
"model.vision_model.encoder.layers.2.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
582 |
+
"model.vision_model.encoder.layers.2.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
583 |
+
"model.vision_model.encoder.layers.2.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
584 |
+
"model.vision_model.encoder.layers.2.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
585 |
+
"model.vision_model.encoder.layers.2.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
586 |
+
"model.vision_model.encoder.layers.20.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
587 |
+
"model.vision_model.encoder.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
588 |
+
"model.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
589 |
+
"model.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
590 |
+
"model.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
591 |
+
"model.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
592 |
+
"model.vision_model.encoder.layers.20.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
593 |
+
"model.vision_model.encoder.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
594 |
+
"model.vision_model.encoder.layers.20.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
595 |
+
"model.vision_model.encoder.layers.20.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
596 |
+
"model.vision_model.encoder.layers.20.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
597 |
+
"model.vision_model.encoder.layers.20.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
598 |
+
"model.vision_model.encoder.layers.21.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
599 |
+
"model.vision_model.encoder.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
600 |
+
"model.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
601 |
+
"model.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
602 |
+
"model.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
603 |
+
"model.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
604 |
+
"model.vision_model.encoder.layers.21.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
605 |
+
"model.vision_model.encoder.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
606 |
+
"model.vision_model.encoder.layers.21.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
607 |
+
"model.vision_model.encoder.layers.21.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
608 |
+
"model.vision_model.encoder.layers.21.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
609 |
+
"model.vision_model.encoder.layers.21.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
610 |
+
"model.vision_model.encoder.layers.22.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
611 |
+
"model.vision_model.encoder.layers.22.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
612 |
+
"model.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
613 |
+
"model.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
614 |
+
"model.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
615 |
+
"model.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
616 |
+
"model.vision_model.encoder.layers.22.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
617 |
+
"model.vision_model.encoder.layers.22.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
618 |
+
"model.vision_model.encoder.layers.22.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
619 |
+
"model.vision_model.encoder.layers.22.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
620 |
+
"model.vision_model.encoder.layers.22.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
621 |
+
"model.vision_model.encoder.layers.22.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
622 |
+
"model.vision_model.encoder.layers.23.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
623 |
+
"model.vision_model.encoder.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
624 |
+
"model.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
625 |
+
"model.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
626 |
+
"model.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
627 |
+
"model.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
628 |
+
"model.vision_model.encoder.layers.23.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
629 |
+
"model.vision_model.encoder.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
630 |
+
"model.vision_model.encoder.layers.23.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
631 |
+
"model.vision_model.encoder.layers.23.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
632 |
+
"model.vision_model.encoder.layers.23.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
633 |
+
"model.vision_model.encoder.layers.23.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
634 |
+
"model.vision_model.encoder.layers.3.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
635 |
+
"model.vision_model.encoder.layers.3.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
636 |
+
"model.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
637 |
+
"model.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
638 |
+
"model.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
639 |
+
"model.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
640 |
+
"model.vision_model.encoder.layers.3.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
641 |
+
"model.vision_model.encoder.layers.3.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
642 |
+
"model.vision_model.encoder.layers.3.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
643 |
+
"model.vision_model.encoder.layers.3.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
644 |
+
"model.vision_model.encoder.layers.3.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
645 |
+
"model.vision_model.encoder.layers.3.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
646 |
+
"model.vision_model.encoder.layers.4.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
647 |
+
"model.vision_model.encoder.layers.4.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
648 |
+
"model.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
649 |
+
"model.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
650 |
+
"model.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
651 |
+
"model.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
652 |
+
"model.vision_model.encoder.layers.4.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
653 |
+
"model.vision_model.encoder.layers.4.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
654 |
+
"model.vision_model.encoder.layers.4.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
655 |
+
"model.vision_model.encoder.layers.4.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
656 |
+
"model.vision_model.encoder.layers.4.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
657 |
+
"model.vision_model.encoder.layers.4.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
658 |
+
"model.vision_model.encoder.layers.5.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
659 |
+
"model.vision_model.encoder.layers.5.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
660 |
+
"model.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
661 |
+
"model.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
662 |
+
"model.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
663 |
+
"model.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
664 |
+
"model.vision_model.encoder.layers.5.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
665 |
+
"model.vision_model.encoder.layers.5.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
666 |
+
"model.vision_model.encoder.layers.5.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
667 |
+
"model.vision_model.encoder.layers.5.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
668 |
+
"model.vision_model.encoder.layers.5.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
669 |
+
"model.vision_model.encoder.layers.5.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
670 |
+
"model.vision_model.encoder.layers.6.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
671 |
+
"model.vision_model.encoder.layers.6.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
672 |
+
"model.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
673 |
+
"model.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
674 |
+
"model.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
675 |
+
"model.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
676 |
+
"model.vision_model.encoder.layers.6.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
677 |
+
"model.vision_model.encoder.layers.6.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
678 |
+
"model.vision_model.encoder.layers.6.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
679 |
+
"model.vision_model.encoder.layers.6.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
680 |
+
"model.vision_model.encoder.layers.6.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
681 |
+
"model.vision_model.encoder.layers.6.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
682 |
+
"model.vision_model.encoder.layers.7.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
683 |
+
"model.vision_model.encoder.layers.7.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
684 |
+
"model.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
685 |
+
"model.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
686 |
+
"model.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
687 |
+
"model.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
688 |
+
"model.vision_model.encoder.layers.7.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
689 |
+
"model.vision_model.encoder.layers.7.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
690 |
+
"model.vision_model.encoder.layers.7.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
691 |
+
"model.vision_model.encoder.layers.7.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
692 |
+
"model.vision_model.encoder.layers.7.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
693 |
+
"model.vision_model.encoder.layers.7.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
694 |
+
"model.vision_model.encoder.layers.8.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
695 |
+
"model.vision_model.encoder.layers.8.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
696 |
+
"model.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
697 |
+
"model.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
698 |
+
"model.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
699 |
+
"model.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
700 |
+
"model.vision_model.encoder.layers.8.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
701 |
+
"model.vision_model.encoder.layers.8.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
702 |
+
"model.vision_model.encoder.layers.8.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
703 |
+
"model.vision_model.encoder.layers.8.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
704 |
+
"model.vision_model.encoder.layers.8.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
705 |
+
"model.vision_model.encoder.layers.8.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
706 |
+
"model.vision_model.encoder.layers.9.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
707 |
+
"model.vision_model.encoder.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
708 |
+
"model.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
709 |
+
"model.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
710 |
+
"model.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
711 |
+
"model.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
712 |
+
"model.vision_model.encoder.layers.9.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
713 |
+
"model.vision_model.encoder.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
714 |
+
"model.vision_model.encoder.layers.9.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
715 |
+
"model.vision_model.encoder.layers.9.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
716 |
+
"model.vision_model.encoder.layers.9.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
717 |
+
"model.vision_model.encoder.layers.9.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
718 |
+
"model.vision_model.post_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
719 |
+
"model.vision_model.post_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
720 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
721 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
722 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
723 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
724 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
725 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
726 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
727 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
728 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
729 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
730 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
731 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
732 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
733 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
734 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
735 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
736 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
737 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
738 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
739 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
740 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
741 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
742 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
743 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
744 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
745 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
746 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
747 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
748 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
749 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
750 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
751 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
752 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
753 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
754 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
755 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
756 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
757 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
758 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
759 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
760 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
761 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
762 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
763 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
764 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
765 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
766 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
767 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
768 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
769 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
770 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
771 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
772 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
773 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
774 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
775 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
776 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
777 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
778 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
779 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
780 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
781 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
782 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
783 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
784 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
785 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
786 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
787 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
788 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
789 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
790 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
791 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
792 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
793 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
794 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
795 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
796 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
797 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
798 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
799 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
800 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
801 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
802 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
803 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
804 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
805 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
806 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
807 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
808 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
809 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
810 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
811 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
812 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
813 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
814 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
815 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
816 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
817 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
818 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
819 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
820 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
821 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
822 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
823 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
824 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
825 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
826 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
827 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
828 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
829 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
830 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
831 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
832 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
833 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
834 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
835 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
836 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
837 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
838 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
839 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
840 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
841 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
842 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
843 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
844 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
845 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
846 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
847 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
848 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
849 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
850 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
851 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
852 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
853 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
854 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
855 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
856 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
857 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
858 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
859 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
860 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
861 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
862 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
863 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
864 |
+
"model.visual_abstractor.query_embeds": "pytorch_model-00004-of-00004.bin",
|
865 |
+
"model.visual_abstractor.visual_fc.bias": "pytorch_model-00004-of-00004.bin",
|
866 |
+
"model.visual_abstractor.visual_fc.weight": "pytorch_model-00004-of-00004.bin",
|
867 |
+
"model.visual_abstractor.vit_eos": "pytorch_model-00004-of-00004.bin"
|
868 |
+
}
|
869 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
Binary file (500 kB). View file
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 2048,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 567,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 1.111111111111111e-06,
|
14 |
+
"loss": 0.4065,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 2.222222222222222e-06,
|
20 |
+
"loss": 0.4126,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 3.3333333333333333e-06,
|
26 |
+
"loss": 0.406,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.02,
|
31 |
+
"learning_rate": 4.444444444444444e-06,
|
32 |
+
"loss": 0.3757,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 5.555555555555557e-06,
|
38 |
+
"loss": 0.2993,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.03,
|
43 |
+
"learning_rate": 6.666666666666667e-06,
|
44 |
+
"loss": 0.2178,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04,
|
49 |
+
"learning_rate": 7.77777777777778e-06,
|
50 |
+
"loss": 0.1332,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"learning_rate": 8.888888888888888e-06,
|
56 |
+
"loss": 0.1436,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.05,
|
61 |
+
"learning_rate": 1e-05,
|
62 |
+
"loss": 0.1261,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.05,
|
67 |
+
"learning_rate": 1.1111111111111113e-05,
|
68 |
+
"loss": 0.1156,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.06,
|
73 |
+
"learning_rate": 1.2222222222222224e-05,
|
74 |
+
"loss": 0.0961,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.06,
|
79 |
+
"learning_rate": 1.3333333333333333e-05,
|
80 |
+
"loss": 0.0911,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.07,
|
85 |
+
"learning_rate": 1.4444444444444446e-05,
|
86 |
+
"loss": 0.0706,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.07,
|
91 |
+
"learning_rate": 1.555555555555556e-05,
|
92 |
+
"loss": 0.1345,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.08,
|
97 |
+
"learning_rate": 1.6666666666666667e-05,
|
98 |
+
"loss": 0.0871,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.08,
|
103 |
+
"learning_rate": 1.7777777777777777e-05,
|
104 |
+
"loss": 0.0744,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.09,
|
109 |
+
"learning_rate": 1.888888888888889e-05,
|
110 |
+
"loss": 0.1035,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.1,
|
115 |
+
"learning_rate": 2e-05,
|
116 |
+
"loss": 0.0768,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.1,
|
121 |
+
"learning_rate": 1.9999836271653566e-05,
|
122 |
+
"loss": 0.0895,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.11,
|
127 |
+
"learning_rate": 1.9999345091975652e-05,
|
128 |
+
"loss": 0.0998,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.11,
|
133 |
+
"learning_rate": 1.999852647705027e-05,
|
134 |
+
"loss": 0.1071,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.12,
|
139 |
+
"learning_rate": 1.9997380453683513e-05,
|
140 |
+
"loss": 0.0921,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.12,
|
145 |
+
"learning_rate": 1.999590705940268e-05,
|
146 |
+
"loss": 0.0948,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.13,
|
151 |
+
"learning_rate": 1.9994106342455053e-05,
|
152 |
+
"loss": 0.095,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.13,
|
157 |
+
"learning_rate": 1.999197836180632e-05,
|
158 |
+
"loss": 0.0547,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.14,
|
163 |
+
"learning_rate": 1.9989523187138623e-05,
|
164 |
+
"loss": 0.0719,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.14,
|
169 |
+
"learning_rate": 1.9986740898848306e-05,
|
170 |
+
"loss": 0.078,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.15,
|
175 |
+
"learning_rate": 1.998363158804326e-05,
|
176 |
+
"loss": 0.0674,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.15,
|
181 |
+
"learning_rate": 1.9980195356539944e-05,
|
182 |
+
"loss": 0.0602,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.16,
|
187 |
+
"learning_rate": 1.9976432316860065e-05,
|
188 |
+
"loss": 0.055,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.16,
|
193 |
+
"learning_rate": 1.9972342592226873e-05,
|
194 |
+
"loss": 0.0587,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.17,
|
199 |
+
"learning_rate": 1.9967926316561136e-05,
|
200 |
+
"loss": 0.0601,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.17,
|
205 |
+
"learning_rate": 1.9963183634476757e-05,
|
206 |
+
"loss": 0.0464,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.18,
|
211 |
+
"learning_rate": 1.995811470127604e-05,
|
212 |
+
"loss": 0.0599,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.19,
|
217 |
+
"learning_rate": 1.9952719682944588e-05,
|
218 |
+
"loss": 0.0483,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.19,
|
223 |
+
"learning_rate": 1.9946998756145894e-05,
|
224 |
+
"loss": 0.0439,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.2,
|
229 |
+
"learning_rate": 1.9940952108215526e-05,
|
230 |
+
"loss": 0.0474,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.2,
|
235 |
+
"learning_rate": 1.993457993715503e-05,
|
236 |
+
"loss": 0.0598,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.21,
|
241 |
+
"learning_rate": 1.99278824516254e-05,
|
242 |
+
"loss": 0.0459,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.21,
|
247 |
+
"learning_rate": 1.9920859870940292e-05,
|
248 |
+
"loss": 0.0493,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.22,
|
253 |
+
"learning_rate": 1.9913512425058803e-05,
|
254 |
+
"loss": 0.0404,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.22,
|
259 |
+
"learning_rate": 1.990584035457797e-05,
|
260 |
+
"loss": 0.0405,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.23,
|
265 |
+
"learning_rate": 1.9897843910724877e-05,
|
266 |
+
"loss": 0.0479,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.23,
|
271 |
+
"learning_rate": 1.9889523355348427e-05,
|
272 |
+
"loss": 0.0446,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.24,
|
277 |
+
"learning_rate": 1.9880878960910772e-05,
|
278 |
+
"loss": 0.0359,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.24,
|
283 |
+
"learning_rate": 1.98719110104784e-05,
|
284 |
+
"loss": 0.0374,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.25,
|
289 |
+
"learning_rate": 1.9862619797712845e-05,
|
290 |
+
"loss": 0.0383,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.25,
|
295 |
+
"learning_rate": 1.985300562686109e-05,
|
296 |
+
"loss": 0.0384,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.26,
|
301 |
+
"learning_rate": 1.9843068812745595e-05,
|
302 |
+
"loss": 0.0403,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.26,
|
307 |
+
"learning_rate": 1.9832809680753985e-05,
|
308 |
+
"loss": 0.0313,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.27,
|
313 |
+
"learning_rate": 1.982222856682841e-05,
|
314 |
+
"loss": 0.0382,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.28,
|
319 |
+
"learning_rate": 1.9811325817454516e-05,
|
320 |
+
"loss": 0.0397,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.28,
|
325 |
+
"learning_rate": 1.980010178965014e-05,
|
326 |
+
"loss": 0.0405,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.29,
|
331 |
+
"learning_rate": 1.978855685095358e-05,
|
332 |
+
"loss": 0.0396,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.29,
|
337 |
+
"learning_rate": 1.977669137941158e-05,
|
338 |
+
"loss": 0.0333,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.3,
|
343 |
+
"learning_rate": 1.9764505763566945e-05,
|
344 |
+
"loss": 0.0414,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.3,
|
349 |
+
"learning_rate": 1.9752000402445824e-05,
|
350 |
+
"loss": 0.0384,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.31,
|
355 |
+
"learning_rate": 1.973917570554464e-05,
|
356 |
+
"loss": 0.0419,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.31,
|
361 |
+
"learning_rate": 1.9726032092816672e-05,
|
362 |
+
"loss": 0.0366,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.32,
|
367 |
+
"learning_rate": 1.9712569994658315e-05,
|
368 |
+
"loss": 0.0363,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.32,
|
373 |
+
"learning_rate": 1.9698789851894986e-05,
|
374 |
+
"loss": 0.0358,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.33,
|
379 |
+
"learning_rate": 1.9684692115766683e-05,
|
380 |
+
"loss": 0.0344,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.33,
|
385 |
+
"learning_rate": 1.9670277247913205e-05,
|
386 |
+
"loss": 0.0373,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.34,
|
391 |
+
"learning_rate": 1.9655545720359056e-05,
|
392 |
+
"loss": 0.0302,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.34,
|
397 |
+
"learning_rate": 1.9640498015497956e-05,
|
398 |
+
"loss": 0.0455,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.35,
|
403 |
+
"learning_rate": 1.9625134626077084e-05,
|
404 |
+
"loss": 0.0337,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.35,
|
409 |
+
"learning_rate": 1.96094560551809e-05,
|
410 |
+
"loss": 0.0277,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.36,
|
415 |
+
"learning_rate": 1.9593462816214698e-05,
|
416 |
+
"loss": 0.0352,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.37,
|
421 |
+
"learning_rate": 1.9577155432887805e-05,
|
422 |
+
"loss": 0.031,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.37,
|
427 |
+
"learning_rate": 1.956053443919639e-05,
|
428 |
+
"loss": 0.0298,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.38,
|
433 |
+
"learning_rate": 1.9543600379406027e-05,
|
434 |
+
"loss": 0.0254,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.38,
|
439 |
+
"learning_rate": 1.9526353808033827e-05,
|
440 |
+
"loss": 0.0312,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.39,
|
445 |
+
"learning_rate": 1.950879528983032e-05,
|
446 |
+
"loss": 0.035,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.39,
|
451 |
+
"learning_rate": 1.9490925399760928e-05,
|
452 |
+
"loss": 0.0298,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.4,
|
457 |
+
"learning_rate": 1.947274472298717e-05,
|
458 |
+
"loss": 0.0368,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.4,
|
463 |
+
"learning_rate": 1.9454253854847472e-05,
|
464 |
+
"loss": 0.0346,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.41,
|
469 |
+
"learning_rate": 1.9435453400837683e-05,
|
470 |
+
"loss": 0.0361,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.41,
|
475 |
+
"learning_rate": 1.941634397659126e-05,
|
476 |
+
"loss": 0.034,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.42,
|
481 |
+
"learning_rate": 1.9396926207859085e-05,
|
482 |
+
"loss": 0.0361,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.42,
|
487 |
+
"learning_rate": 1.937720073048899e-05,
|
488 |
+
"loss": 0.0359,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.43,
|
493 |
+
"learning_rate": 1.9357168190404937e-05,
|
494 |
+
"loss": 0.0323,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.43,
|
499 |
+
"learning_rate": 1.9336829243585856e-05,
|
500 |
+
"loss": 0.0435,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.44,
|
505 |
+
"learning_rate": 1.9316184556044176e-05,
|
506 |
+
"loss": 0.0344,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.44,
|
511 |
+
"learning_rate": 1.9295234803804005e-05,
|
512 |
+
"loss": 0.0272,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.45,
|
517 |
+
"learning_rate": 1.9273980672879e-05,
|
518 |
+
"loss": 0.0387,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.46,
|
523 |
+
"learning_rate": 1.925242285924991e-05,
|
524 |
+
"loss": 0.0331,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.46,
|
529 |
+
"learning_rate": 1.9230562068841764e-05,
|
530 |
+
"loss": 0.0322,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.47,
|
535 |
+
"learning_rate": 1.9208399017500773e-05,
|
536 |
+
"loss": 0.0351,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.47,
|
541 |
+
"learning_rate": 1.9185934430970897e-05,
|
542 |
+
"loss": 0.0285,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.48,
|
547 |
+
"learning_rate": 1.916316904487005e-05,
|
548 |
+
"loss": 0.0328,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.48,
|
553 |
+
"learning_rate": 1.9140103604666035e-05,
|
554 |
+
"loss": 0.0374,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.49,
|
559 |
+
"learning_rate": 1.9116738865652134e-05,
|
560 |
+
"loss": 0.036,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.49,
|
565 |
+
"learning_rate": 1.909307559292236e-05,
|
566 |
+
"loss": 0.0313,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.5,
|
571 |
+
"learning_rate": 1.906911456134642e-05,
|
572 |
+
"loss": 0.0331,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.5,
|
577 |
+
"learning_rate": 1.9044856555544323e-05,
|
578 |
+
"loss": 0.0322,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.51,
|
583 |
+
"learning_rate": 1.9020302369860708e-05,
|
584 |
+
"loss": 0.0301,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.51,
|
589 |
+
"learning_rate": 1.8995452808338822e-05,
|
590 |
+
"loss": 0.0266,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.52,
|
595 |
+
"learning_rate": 1.8970308684694186e-05,
|
596 |
+
"loss": 0.0274,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.52,
|
601 |
+
"learning_rate": 1.8944870822287957e-05,
|
602 |
+
"loss": 0.0305,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.53,
|
607 |
+
"learning_rate": 1.8919140054099966e-05,
|
608 |
+
"loss": 0.0273,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.53,
|
613 |
+
"learning_rate": 1.8893117222701435e-05,
|
614 |
+
"loss": 0.0264,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.54,
|
619 |
+
"learning_rate": 1.8866803180227403e-05,
|
620 |
+
"loss": 0.0319,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.54,
|
625 |
+
"learning_rate": 1.8840198788348795e-05,
|
626 |
+
"loss": 0.03,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.55,
|
631 |
+
"learning_rate": 1.881330491824423e-05,
|
632 |
+
"loss": 0.0268,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.56,
|
637 |
+
"learning_rate": 1.8786122450571485e-05,
|
638 |
+
"loss": 0.0311,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.56,
|
643 |
+
"learning_rate": 1.8758652275438657e-05,
|
644 |
+
"loss": 0.0269,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.57,
|
649 |
+
"learning_rate": 1.8730895292375018e-05,
|
650 |
+
"loss": 0.0298,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.57,
|
655 |
+
"learning_rate": 1.8702852410301556e-05,
|
656 |
+
"loss": 0.0275,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.58,
|
661 |
+
"learning_rate": 1.8674524547501207e-05,
|
662 |
+
"loss": 0.0287,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.58,
|
667 |
+
"learning_rate": 1.8645912631588806e-05,
|
668 |
+
"loss": 0.0314,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.59,
|
673 |
+
"learning_rate": 1.861701759948068e-05,
|
674 |
+
"loss": 0.0307,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.59,
|
679 |
+
"learning_rate": 1.8587840397364007e-05,
|
680 |
+
"loss": 0.0322,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.6,
|
685 |
+
"learning_rate": 1.855838198066579e-05,
|
686 |
+
"loss": 0.0236,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.6,
|
691 |
+
"learning_rate": 1.85286433140216e-05,
|
692 |
+
"loss": 0.0309,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.61,
|
697 |
+
"learning_rate": 1.8498625371243978e-05,
|
698 |
+
"loss": 0.0273,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.61,
|
703 |
+
"learning_rate": 1.8468329135290555e-05,
|
704 |
+
"loss": 0.0362,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.62,
|
709 |
+
"learning_rate": 1.8437755598231857e-05,
|
710 |
+
"loss": 0.0238,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.62,
|
715 |
+
"learning_rate": 1.8406905761218815e-05,
|
716 |
+
"loss": 0.0271,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.63,
|
721 |
+
"learning_rate": 1.837578063444998e-05,
|
722 |
+
"loss": 0.0309,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.63,
|
727 |
+
"learning_rate": 1.8344381237138473e-05,
|
728 |
+
"loss": 0.0305,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.64,
|
733 |
+
"learning_rate": 1.831270859747857e-05,
|
734 |
+
"loss": 0.025,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.65,
|
739 |
+
"learning_rate": 1.8280763752612052e-05,
|
740 |
+
"loss": 0.028,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.65,
|
745 |
+
"learning_rate": 1.8248547748594246e-05,
|
746 |
+
"loss": 0.0257,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.66,
|
751 |
+
"learning_rate": 1.8216061640359764e-05,
|
752 |
+
"loss": 0.0255,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.66,
|
757 |
+
"learning_rate": 1.8183306491687968e-05,
|
758 |
+
"loss": 0.0288,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.67,
|
763 |
+
"learning_rate": 1.8150283375168112e-05,
|
764 |
+
"loss": 0.0318,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.67,
|
769 |
+
"learning_rate": 1.8116993372164265e-05,
|
770 |
+
"loss": 0.0282,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.68,
|
775 |
+
"learning_rate": 1.8083437572779842e-05,
|
776 |
+
"loss": 0.0302,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.68,
|
781 |
+
"learning_rate": 1.8049617075821962e-05,
|
782 |
+
"loss": 0.0264,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.69,
|
787 |
+
"learning_rate": 1.8015532988765427e-05,
|
788 |
+
"loss": 0.027,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.69,
|
793 |
+
"learning_rate": 1.7981186427716478e-05,
|
794 |
+
"loss": 0.0251,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.7,
|
799 |
+
"learning_rate": 1.794657851737625e-05,
|
800 |
+
"loss": 0.0339,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.7,
|
805 |
+
"learning_rate": 1.791171039100393e-05,
|
806 |
+
"loss": 0.0276,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.71,
|
811 |
+
"learning_rate": 1.787658319037965e-05,
|
812 |
+
"loss": 0.0252,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.71,
|
817 |
+
"learning_rate": 1.7841198065767107e-05,
|
818 |
+
"loss": 0.0262,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.72,
|
823 |
+
"learning_rate": 1.7805556175875886e-05,
|
824 |
+
"loss": 0.0243,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.72,
|
829 |
+
"learning_rate": 1.7769658687823525e-05,
|
830 |
+
"loss": 0.03,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.73,
|
835 |
+
"learning_rate": 1.77335067770973e-05,
|
836 |
+
"loss": 0.0271,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.74,
|
841 |
+
"learning_rate": 1.7697101627515722e-05,
|
842 |
+
"loss": 0.0296,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.74,
|
847 |
+
"learning_rate": 1.766044443118978e-05,
|
848 |
+
"loss": 0.0221,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.75,
|
853 |
+
"learning_rate": 1.7623536388483902e-05,
|
854 |
+
"loss": 0.0272,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.75,
|
859 |
+
"learning_rate": 1.758637870797665e-05,
|
860 |
+
"loss": 0.0257,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.76,
|
865 |
+
"learning_rate": 1.754897260642114e-05,
|
866 |
+
"loss": 0.0321,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.76,
|
871 |
+
"learning_rate": 1.7511319308705198e-05,
|
872 |
+
"loss": 0.0276,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.77,
|
877 |
+
"learning_rate": 1.747342004781127e-05,
|
878 |
+
"loss": 0.0314,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.77,
|
883 |
+
"learning_rate": 1.7435276064776004e-05,
|
884 |
+
"loss": 0.0249,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.78,
|
889 |
+
"learning_rate": 1.7396888608649673e-05,
|
890 |
+
"loss": 0.0289,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.78,
|
895 |
+
"learning_rate": 1.7358258936455203e-05,
|
896 |
+
"loss": 0.0271,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.79,
|
901 |
+
"learning_rate": 1.7319388313147067e-05,
|
902 |
+
"loss": 0.0231,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.79,
|
907 |
+
"learning_rate": 1.7280278011569848e-05,
|
908 |
+
"loss": 0.0272,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.8,
|
913 |
+
"learning_rate": 1.7240929312416545e-05,
|
914 |
+
"loss": 0.0307,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.8,
|
919 |
+
"learning_rate": 1.7201343504186646e-05,
|
920 |
+
"loss": 0.0264,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.81,
|
925 |
+
"learning_rate": 1.7161521883143936e-05,
|
926 |
+
"loss": 0.0295,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.81,
|
931 |
+
"learning_rate": 1.7121465753274047e-05,
|
932 |
+
"loss": 0.0259,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.82,
|
937 |
+
"learning_rate": 1.708117642624176e-05,
|
938 |
+
"loss": 0.0299,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.83,
|
943 |
+
"learning_rate": 1.7040655221348057e-05,
|
944 |
+
"loss": 0.0261,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.83,
|
949 |
+
"learning_rate": 1.6999903465486913e-05,
|
950 |
+
"loss": 0.0273,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.84,
|
955 |
+
"learning_rate": 1.6958922493101844e-05,
|
956 |
+
"loss": 0.0269,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.84,
|
961 |
+
"learning_rate": 1.6917713646142222e-05,
|
962 |
+
"loss": 0.0291,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.85,
|
967 |
+
"learning_rate": 1.687627827401932e-05,
|
968 |
+
"loss": 0.0236,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.85,
|
973 |
+
"learning_rate": 1.683461773356213e-05,
|
974 |
+
"loss": 0.0222,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.86,
|
979 |
+
"learning_rate": 1.679273338897293e-05,
|
980 |
+
"loss": 0.0297,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.86,
|
985 |
+
"learning_rate": 1.6750626611782624e-05,
|
986 |
+
"loss": 0.0275,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.87,
|
991 |
+
"learning_rate": 1.6708298780805808e-05,
|
992 |
+
"loss": 0.0244,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.87,
|
997 |
+
"learning_rate": 1.6665751282095634e-05,
|
998 |
+
"loss": 0.0226,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.88,
|
1003 |
+
"learning_rate": 1.6622985508898427e-05,
|
1004 |
+
"loss": 0.0293,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.88,
|
1009 |
+
"learning_rate": 1.6580002861608053e-05,
|
1010 |
+
"loss": 0.0307,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.89,
|
1015 |
+
"learning_rate": 1.653680474772006e-05,
|
1016 |
+
"loss": 0.0267,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.89,
|
1021 |
+
"learning_rate": 1.6493392581785608e-05,
|
1022 |
+
"loss": 0.0295,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.9,
|
1027 |
+
"learning_rate": 1.644976778536512e-05,
|
1028 |
+
"loss": 0.0274,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.9,
|
1033 |
+
"learning_rate": 1.6405931786981753e-05,
|
1034 |
+
"loss": 0.0282,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.91,
|
1039 |
+
"learning_rate": 1.6361886022074612e-05,
|
1040 |
+
"loss": 0.0245,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.92,
|
1045 |
+
"learning_rate": 1.6317631932951754e-05,
|
1046 |
+
"loss": 0.0302,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.92,
|
1051 |
+
"learning_rate": 1.6273170968742942e-05,
|
1052 |
+
"loss": 0.0271,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.93,
|
1057 |
+
"learning_rate": 1.62285045853522e-05,
|
1058 |
+
"loss": 0.0267,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.93,
|
1063 |
+
"learning_rate": 1.618363424541016e-05,
|
1064 |
+
"loss": 0.0201,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.94,
|
1069 |
+
"learning_rate": 1.613856141822612e-05,
|
1070 |
+
"loss": 0.0324,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.94,
|
1075 |
+
"learning_rate": 1.6093287579739983e-05,
|
1076 |
+
"loss": 0.0289,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.95,
|
1081 |
+
"learning_rate": 1.604781421247389e-05,
|
1082 |
+
"loss": 0.0288,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.95,
|
1087 |
+
"learning_rate": 1.6002142805483686e-05,
|
1088 |
+
"loss": 0.029,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.96,
|
1093 |
+
"learning_rate": 1.5956274854310157e-05,
|
1094 |
+
"loss": 0.0242,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.96,
|
1099 |
+
"learning_rate": 1.5910211860930063e-05,
|
1100 |
+
"loss": 0.0278,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.97,
|
1105 |
+
"learning_rate": 1.586395533370696e-05,
|
1106 |
+
"loss": 0.0319,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.97,
|
1111 |
+
"learning_rate": 1.5817506787341782e-05,
|
1112 |
+
"loss": 0.0247,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.98,
|
1117 |
+
"learning_rate": 1.5770867742823268e-05,
|
1118 |
+
"loss": 0.0246,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.98,
|
1123 |
+
"learning_rate": 1.572403972737815e-05,
|
1124 |
+
"loss": 0.0273,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.99,
|
1129 |
+
"learning_rate": 1.567702427442113e-05,
|
1130 |
+
"loss": 0.0281,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.99,
|
1135 |
+
"learning_rate": 1.5629822923504692e-05,
|
1136 |
+
"loss": 0.0289,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.0,
|
1141 |
+
"learning_rate": 1.5582437220268648e-05,
|
1142 |
+
"loss": 0.026,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.01,
|
1147 |
+
"learning_rate": 1.553486871638958e-05,
|
1148 |
+
"loss": 0.0183,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.01,
|
1153 |
+
"learning_rate": 1.5487118969529973e-05,
|
1154 |
+
"loss": 0.0248,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.02,
|
1159 |
+
"learning_rate": 1.5439189543287247e-05,
|
1160 |
+
"loss": 0.0309,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.02,
|
1165 |
+
"learning_rate": 1.539108200714255e-05,
|
1166 |
+
"loss": 0.0274,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.03,
|
1171 |
+
"learning_rate": 1.534279793640935e-05,
|
1172 |
+
"loss": 0.0235,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.03,
|
1177 |
+
"learning_rate": 1.529433891218185e-05,
|
1178 |
+
"loss": 0.0276,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.04,
|
1183 |
+
"learning_rate": 1.5245706521283246e-05,
|
1184 |
+
"loss": 0.0228,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.04,
|
1189 |
+
"learning_rate": 1.5196902356213715e-05,
|
1190 |
+
"loss": 0.0213,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.05,
|
1195 |
+
"learning_rate": 1.5147928015098309e-05,
|
1196 |
+
"loss": 0.0185,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.05,
|
1201 |
+
"learning_rate": 1.5098785101634605e-05,
|
1202 |
+
"loss": 0.0231,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.06,
|
1207 |
+
"learning_rate": 1.5049475225040202e-05,
|
1208 |
+
"loss": 0.0202,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.06,
|
1213 |
+
"learning_rate": 1.5000000000000002e-05,
|
1214 |
+
"loss": 0.0236,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.07,
|
1219 |
+
"learning_rate": 1.4950361046613367e-05,
|
1220 |
+
"loss": 0.0242,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.07,
|
1225 |
+
"learning_rate": 1.4900559990341048e-05,
|
1226 |
+
"loss": 0.0254,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.08,
|
1231 |
+
"learning_rate": 1.4850598461951963e-05,
|
1232 |
+
"loss": 0.0231,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.08,
|
1237 |
+
"learning_rate": 1.4800478097469799e-05,
|
1238 |
+
"loss": 0.023,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.09,
|
1243 |
+
"learning_rate": 1.4750200538119435e-05,
|
1244 |
+
"loss": 0.025,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.1,
|
1249 |
+
"learning_rate": 1.4699767430273202e-05,
|
1250 |
+
"loss": 0.0231,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.1,
|
1255 |
+
"learning_rate": 1.4649180425396972e-05,
|
1256 |
+
"loss": 0.0239,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 1.11,
|
1261 |
+
"learning_rate": 1.4598441179996075e-05,
|
1262 |
+
"loss": 0.0277,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.11,
|
1267 |
+
"learning_rate": 1.454755135556106e-05,
|
1268 |
+
"loss": 0.0231,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.12,
|
1273 |
+
"learning_rate": 1.4496512618513289e-05,
|
1274 |
+
"loss": 0.0225,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 1.12,
|
1279 |
+
"learning_rate": 1.444532664015037e-05,
|
1280 |
+
"loss": 0.0266,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.13,
|
1285 |
+
"learning_rate": 1.4393995096591415e-05,
|
1286 |
+
"loss": 0.0204,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.13,
|
1291 |
+
"learning_rate": 1.4342519668722184e-05,
|
1292 |
+
"loss": 0.0256,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.14,
|
1297 |
+
"learning_rate": 1.4290902042140005e-05,
|
1298 |
+
"loss": 0.0231,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 1.14,
|
1303 |
+
"learning_rate": 1.423914390709861e-05,
|
1304 |
+
"loss": 0.0203,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.15,
|
1309 |
+
"learning_rate": 1.4187246958452772e-05,
|
1310 |
+
"loss": 0.0259,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.15,
|
1315 |
+
"learning_rate": 1.413521289560281e-05,
|
1316 |
+
"loss": 0.0242,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.16,
|
1321 |
+
"learning_rate": 1.4083043422438936e-05,
|
1322 |
+
"loss": 0.0219,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.16,
|
1327 |
+
"learning_rate": 1.4030740247285466e-05,
|
1328 |
+
"loss": 0.0295,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.17,
|
1333 |
+
"learning_rate": 1.3978305082844876e-05,
|
1334 |
+
"loss": 0.0188,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.17,
|
1339 |
+
"learning_rate": 1.3925739646141721e-05,
|
1340 |
+
"loss": 0.0253,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.18,
|
1345 |
+
"learning_rate": 1.3873045658466404e-05,
|
1346 |
+
"loss": 0.0284,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.19,
|
1351 |
+
"learning_rate": 1.3820224845318821e-05,
|
1352 |
+
"loss": 0.0229,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.19,
|
1357 |
+
"learning_rate": 1.3767278936351853e-05,
|
1358 |
+
"loss": 0.0209,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.2,
|
1363 |
+
"learning_rate": 1.371420966531472e-05,
|
1364 |
+
"loss": 0.0266,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.2,
|
1369 |
+
"learning_rate": 1.3661018769996228e-05,
|
1370 |
+
"loss": 0.0253,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.21,
|
1375 |
+
"learning_rate": 1.3607707992167836e-05,
|
1376 |
+
"loss": 0.0247,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.21,
|
1381 |
+
"learning_rate": 1.3554279077526648e-05,
|
1382 |
+
"loss": 0.0213,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 1.22,
|
1387 |
+
"learning_rate": 1.3500733775638232e-05,
|
1388 |
+
"loss": 0.0321,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.22,
|
1393 |
+
"learning_rate": 1.3447073839879339e-05,
|
1394 |
+
"loss": 0.0238,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.23,
|
1399 |
+
"learning_rate": 1.3393301027380476e-05,
|
1400 |
+
"loss": 0.0228,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.23,
|
1405 |
+
"learning_rate": 1.333941709896838e-05,
|
1406 |
+
"loss": 0.0227,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.24,
|
1411 |
+
"learning_rate": 1.3285423819108349e-05,
|
1412 |
+
"loss": 0.022,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.24,
|
1417 |
+
"learning_rate": 1.3231322955846469e-05,
|
1418 |
+
"loss": 0.0261,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.25,
|
1423 |
+
"learning_rate": 1.3177116280751717e-05,
|
1424 |
+
"loss": 0.0194,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.25,
|
1429 |
+
"learning_rate": 1.3122805568857948e-05,
|
1430 |
+
"loss": 0.0227,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.26,
|
1435 |
+
"learning_rate": 1.3068392598605775e-05,
|
1436 |
+
"loss": 0.0217,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.26,
|
1441 |
+
"learning_rate": 1.3013879151784321e-05,
|
1442 |
+
"loss": 0.0261,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.27,
|
1447 |
+
"learning_rate": 1.2959267013472894e-05,
|
1448 |
+
"loss": 0.0243,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.28,
|
1453 |
+
"learning_rate": 1.2904557971982514e-05,
|
1454 |
+
"loss": 0.0257,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.28,
|
1459 |
+
"learning_rate": 1.2849753818797353e-05,
|
1460 |
+
"loss": 0.0227,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.29,
|
1465 |
+
"learning_rate": 1.2794856348516095e-05,
|
1466 |
+
"loss": 0.0187,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.29,
|
1471 |
+
"learning_rate": 1.2739867358793142e-05,
|
1472 |
+
"loss": 0.021,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.3,
|
1477 |
+
"learning_rate": 1.2684788650279772e-05,
|
1478 |
+
"loss": 0.0249,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.3,
|
1483 |
+
"learning_rate": 1.2629622026565147e-05,
|
1484 |
+
"loss": 0.0238,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.31,
|
1489 |
+
"learning_rate": 1.2574369294117296e-05,
|
1490 |
+
"loss": 0.0261,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.31,
|
1495 |
+
"learning_rate": 1.2519032262223913e-05,
|
1496 |
+
"loss": 0.0242,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.32,
|
1501 |
+
"learning_rate": 1.2463612742933148e-05,
|
1502 |
+
"loss": 0.0219,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 1.32,
|
1507 |
+
"learning_rate": 1.2408112550994253e-05,
|
1508 |
+
"loss": 0.0273,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.33,
|
1513 |
+
"learning_rate": 1.2352533503798156e-05,
|
1514 |
+
"loss": 0.0245,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.33,
|
1519 |
+
"learning_rate": 1.2296877421317958e-05,
|
1520 |
+
"loss": 0.0186,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.34,
|
1525 |
+
"learning_rate": 1.2241146126049326e-05,
|
1526 |
+
"loss": 0.0159,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.34,
|
1531 |
+
"learning_rate": 1.2185341442950829e-05,
|
1532 |
+
"loss": 0.0225,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.35,
|
1537 |
+
"learning_rate": 1.2129465199384158e-05,
|
1538 |
+
"loss": 0.024,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.35,
|
1543 |
+
"learning_rate": 1.2073519225054314e-05,
|
1544 |
+
"loss": 0.0224,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.36,
|
1549 |
+
"learning_rate": 1.201750535194966e-05,
|
1550 |
+
"loss": 0.0178,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.37,
|
1555 |
+
"learning_rate": 1.196142541428197e-05,
|
1556 |
+
"loss": 0.0227,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.37,
|
1561 |
+
"learning_rate": 1.1905281248426333e-05,
|
1562 |
+
"loss": 0.0248,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.38,
|
1567 |
+
"learning_rate": 1.1849074692861033e-05,
|
1568 |
+
"loss": 0.0231,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.38,
|
1573 |
+
"learning_rate": 1.1792807588107358e-05,
|
1574 |
+
"loss": 0.0221,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.39,
|
1579 |
+
"learning_rate": 1.1736481776669307e-05,
|
1580 |
+
"loss": 0.0237,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.39,
|
1585 |
+
"learning_rate": 1.1680099102973271e-05,
|
1586 |
+
"loss": 0.0205,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.4,
|
1591 |
+
"learning_rate": 1.1623661413307638e-05,
|
1592 |
+
"loss": 0.0295,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.4,
|
1597 |
+
"learning_rate": 1.1567170555762335e-05,
|
1598 |
+
"loss": 0.0224,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.41,
|
1603 |
+
"learning_rate": 1.1510628380168291e-05,
|
1604 |
+
"loss": 0.023,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.41,
|
1609 |
+
"learning_rate": 1.14540367380369e-05,
|
1610 |
+
"loss": 0.0218,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.42,
|
1615 |
+
"learning_rate": 1.1397397482499352e-05,
|
1616 |
+
"loss": 0.0185,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.42,
|
1621 |
+
"learning_rate": 1.1340712468245977e-05,
|
1622 |
+
"loss": 0.0261,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.43,
|
1627 |
+
"learning_rate": 1.1283983551465512e-05,
|
1628 |
+
"loss": 0.024,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.43,
|
1633 |
+
"learning_rate": 1.1227212589784297e-05,
|
1634 |
+
"loss": 0.0235,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.44,
|
1639 |
+
"learning_rate": 1.1170401442205475e-05,
|
1640 |
+
"loss": 0.0214,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.44,
|
1645 |
+
"learning_rate": 1.1113551969048088e-05,
|
1646 |
+
"loss": 0.0218,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.45,
|
1651 |
+
"learning_rate": 1.1056666031886193e-05,
|
1652 |
+
"loss": 0.0185,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.46,
|
1657 |
+
"learning_rate": 1.099974549348787e-05,
|
1658 |
+
"loss": 0.0211,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.46,
|
1663 |
+
"learning_rate": 1.0942792217754245e-05,
|
1664 |
+
"loss": 0.0229,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.47,
|
1669 |
+
"learning_rate": 1.0885808069658452e-05,
|
1670 |
+
"loss": 0.0232,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.47,
|
1675 |
+
"learning_rate": 1.0828794915184556e-05,
|
1676 |
+
"loss": 0.0227,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.48,
|
1681 |
+
"learning_rate": 1.0771754621266466e-05,
|
1682 |
+
"loss": 0.025,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.48,
|
1687 |
+
"learning_rate": 1.071468905572677e-05,
|
1688 |
+
"loss": 0.02,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.49,
|
1693 |
+
"learning_rate": 1.0657600087215618e-05,
|
1694 |
+
"loss": 0.0253,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.49,
|
1699 |
+
"learning_rate": 1.0600489585149485e-05,
|
1700 |
+
"loss": 0.0218,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.5,
|
1705 |
+
"learning_rate": 1.0543359419649986e-05,
|
1706 |
+
"loss": 0.0212,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.5,
|
1711 |
+
"learning_rate": 1.0486211461482625e-05,
|
1712 |
+
"loss": 0.0225,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.51,
|
1717 |
+
"learning_rate": 1.0429047581995547e-05,
|
1718 |
+
"loss": 0.0216,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.51,
|
1723 |
+
"learning_rate": 1.0371869653058235e-05,
|
1724 |
+
"loss": 0.0209,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.52,
|
1729 |
+
"learning_rate": 1.0314679547000251e-05,
|
1730 |
+
"loss": 0.0228,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.52,
|
1735 |
+
"learning_rate": 1.0257479136549889e-05,
|
1736 |
+
"loss": 0.0187,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.53,
|
1741 |
+
"learning_rate": 1.0200270294772869e-05,
|
1742 |
+
"loss": 0.0172,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.53,
|
1747 |
+
"learning_rate": 1.0143054895011011e-05,
|
1748 |
+
"loss": 0.0247,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 1.54,
|
1753 |
+
"learning_rate": 1.0085834810820871e-05,
|
1754 |
+
"loss": 0.016,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.54,
|
1759 |
+
"learning_rate": 1.0028611915912405e-05,
|
1760 |
+
"loss": 0.0187,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.55,
|
1765 |
+
"learning_rate": 9.9713880840876e-06,
|
1766 |
+
"loss": 0.0221,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.56,
|
1771 |
+
"learning_rate": 9.914165189179132e-06,
|
1772 |
+
"loss": 0.0246,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.56,
|
1777 |
+
"learning_rate": 9.856945104988989e-06,
|
1778 |
+
"loss": 0.0241,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.57,
|
1783 |
+
"learning_rate": 9.799729705227133e-06,
|
1784 |
+
"loss": 0.0213,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.57,
|
1789 |
+
"learning_rate": 9.742520863450116e-06,
|
1790 |
+
"loss": 0.025,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.58,
|
1795 |
+
"learning_rate": 9.68532045299975e-06,
|
1796 |
+
"loss": 0.0232,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.58,
|
1801 |
+
"learning_rate": 9.628130346941767e-06,
|
1802 |
+
"loss": 0.0286,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.59,
|
1807 |
+
"learning_rate": 9.570952418004455e-06,
|
1808 |
+
"loss": 0.0247,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.59,
|
1813 |
+
"learning_rate": 9.513788538517375e-06,
|
1814 |
+
"loss": 0.0209,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.6,
|
1819 |
+
"learning_rate": 9.456640580350019e-06,
|
1820 |
+
"loss": 0.0223,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 1.6,
|
1825 |
+
"learning_rate": 9.399510414850518e-06,
|
1826 |
+
"loss": 0.026,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 1.61,
|
1831 |
+
"learning_rate": 9.342399912784387e-06,
|
1832 |
+
"loss": 0.0231,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.61,
|
1837 |
+
"learning_rate": 9.285310944273232e-06,
|
1838 |
+
"loss": 0.0206,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.62,
|
1843 |
+
"learning_rate": 9.228245378733537e-06,
|
1844 |
+
"loss": 0.0206,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 1.62,
|
1849 |
+
"learning_rate": 9.171205084815445e-06,
|
1850 |
+
"loss": 0.0244,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 1.63,
|
1855 |
+
"learning_rate": 9.11419193034155e-06,
|
1856 |
+
"loss": 0.0214,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.63,
|
1861 |
+
"learning_rate": 9.057207782245756e-06,
|
1862 |
+
"loss": 0.0242,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 1.64,
|
1867 |
+
"learning_rate": 9.000254506512133e-06,
|
1868 |
+
"loss": 0.0187,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 1.65,
|
1873 |
+
"learning_rate": 8.943333968113808e-06,
|
1874 |
+
"loss": 0.0186,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 1.65,
|
1879 |
+
"learning_rate": 8.886448030951912e-06,
|
1880 |
+
"loss": 0.0255,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 1.66,
|
1885 |
+
"learning_rate": 8.82959855779453e-06,
|
1886 |
+
"loss": 0.0229,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 1.66,
|
1891 |
+
"learning_rate": 8.772787410215706e-06,
|
1892 |
+
"loss": 0.0202,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 1.67,
|
1897 |
+
"learning_rate": 8.71601644853449e-06,
|
1898 |
+
"loss": 0.0179,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.67,
|
1903 |
+
"learning_rate": 8.659287531754025e-06,
|
1904 |
+
"loss": 0.0224,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 1.68,
|
1909 |
+
"learning_rate": 8.60260251750065e-06,
|
1910 |
+
"loss": 0.0211,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 1.68,
|
1915 |
+
"learning_rate": 8.545963261963102e-06,
|
1916 |
+
"loss": 0.021,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.69,
|
1921 |
+
"learning_rate": 8.48937161983171e-06,
|
1922 |
+
"loss": 0.0203,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 1.69,
|
1927 |
+
"learning_rate": 8.432829444237667e-06,
|
1928 |
+
"loss": 0.0226,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 1.7,
|
1933 |
+
"learning_rate": 8.376338586692367e-06,
|
1934 |
+
"loss": 0.0224,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.7,
|
1939 |
+
"learning_rate": 8.319900897026734e-06,
|
1940 |
+
"loss": 0.0194,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.71,
|
1945 |
+
"learning_rate": 8.263518223330698e-06,
|
1946 |
+
"loss": 0.0191,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 1.71,
|
1951 |
+
"learning_rate": 8.207192411892645e-06,
|
1952 |
+
"loss": 0.0196,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.72,
|
1957 |
+
"learning_rate": 8.150925307138968e-06,
|
1958 |
+
"loss": 0.0269,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.72,
|
1963 |
+
"learning_rate": 8.094718751573669e-06,
|
1964 |
+
"loss": 0.0221,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.73,
|
1969 |
+
"learning_rate": 8.038574585718032e-06,
|
1970 |
+
"loss": 0.021,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 1.74,
|
1975 |
+
"learning_rate": 7.982494648050341e-06,
|
1976 |
+
"loss": 0.0257,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.74,
|
1981 |
+
"learning_rate": 7.926480774945688e-06,
|
1982 |
+
"loss": 0.0224,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.75,
|
1987 |
+
"learning_rate": 7.870534800615845e-06,
|
1988 |
+
"loss": 0.0219,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 1.75,
|
1993 |
+
"learning_rate": 7.814658557049175e-06,
|
1994 |
+
"loss": 0.0228,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.76,
|
1999 |
+
"learning_rate": 7.758853873950676e-06,
|
2000 |
+
"loss": 0.0238,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.76,
|
2005 |
+
"learning_rate": 7.703122578682047e-06,
|
2006 |
+
"loss": 0.0211,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 1.77,
|
2011 |
+
"learning_rate": 7.647466496201848e-06,
|
2012 |
+
"loss": 0.018,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 1.77,
|
2017 |
+
"learning_rate": 7.591887449005748e-06,
|
2018 |
+
"loss": 0.0223,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 1.78,
|
2023 |
+
"learning_rate": 7.536387257066854e-06,
|
2024 |
+
"loss": 0.0243,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.78,
|
2029 |
+
"learning_rate": 7.480967737776089e-06,
|
2030 |
+
"loss": 0.0214,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 1.79,
|
2035 |
+
"learning_rate": 7.425630705882707e-06,
|
2036 |
+
"loss": 0.0199,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 1.79,
|
2041 |
+
"learning_rate": 7.370377973434854e-06,
|
2042 |
+
"loss": 0.0246,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 1.8,
|
2047 |
+
"learning_rate": 7.315211349720231e-06,
|
2048 |
+
"loss": 0.0192,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 1.8,
|
2053 |
+
"learning_rate": 7.260132641206861e-06,
|
2054 |
+
"loss": 0.0179,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 1.81,
|
2059 |
+
"learning_rate": 7.2051436514839064e-06,
|
2060 |
+
"loss": 0.0188,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 1.81,
|
2065 |
+
"learning_rate": 7.150246181202648e-06,
|
2066 |
+
"loss": 0.0193,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.82,
|
2071 |
+
"learning_rate": 7.0954420280174915e-06,
|
2072 |
+
"loss": 0.0177,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.83,
|
2077 |
+
"learning_rate": 7.040732986527108e-06,
|
2078 |
+
"loss": 0.0197,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 1.83,
|
2083 |
+
"learning_rate": 6.9861208482156785e-06,
|
2084 |
+
"loss": 0.0214,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 1.84,
|
2089 |
+
"learning_rate": 6.931607401394229e-06,
|
2090 |
+
"loss": 0.0175,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 1.84,
|
2095 |
+
"learning_rate": 6.877194431142055e-06,
|
2096 |
+
"loss": 0.0202,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 1.85,
|
2101 |
+
"learning_rate": 6.822883719248283e-06,
|
2102 |
+
"loss": 0.0194,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 1.85,
|
2107 |
+
"learning_rate": 6.768677044153535e-06,
|
2108 |
+
"loss": 0.0242,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.86,
|
2113 |
+
"learning_rate": 6.714576180891653e-06,
|
2114 |
+
"loss": 0.0248,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 1.86,
|
2119 |
+
"learning_rate": 6.660582901031621e-06,
|
2120 |
+
"loss": 0.025,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 1.87,
|
2125 |
+
"learning_rate": 6.6066989726195265e-06,
|
2126 |
+
"loss": 0.0195,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 1.87,
|
2131 |
+
"learning_rate": 6.552926160120663e-06,
|
2132 |
+
"loss": 0.0189,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 1.88,
|
2137 |
+
"learning_rate": 6.499266224361768e-06,
|
2138 |
+
"loss": 0.0201,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 1.88,
|
2143 |
+
"learning_rate": 6.445720922473355e-06,
|
2144 |
+
"loss": 0.0227,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 1.89,
|
2149 |
+
"learning_rate": 6.3922920078321685e-06,
|
2150 |
+
"loss": 0.0196,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.89,
|
2155 |
+
"learning_rate": 6.3389812300037774e-06,
|
2156 |
+
"loss": 0.0233,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 1.9,
|
2161 |
+
"learning_rate": 6.285790334685283e-06,
|
2162 |
+
"loss": 0.02,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 1.9,
|
2167 |
+
"learning_rate": 6.232721063648148e-06,
|
2168 |
+
"loss": 0.0173,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 1.91,
|
2173 |
+
"learning_rate": 6.179775154681184e-06,
|
2174 |
+
"loss": 0.0198,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 1.92,
|
2179 |
+
"learning_rate": 6.1269543415336e-06,
|
2180 |
+
"loss": 0.0224,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 1.92,
|
2185 |
+
"learning_rate": 6.074260353858283e-06,
|
2186 |
+
"loss": 0.0186,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 1.93,
|
2191 |
+
"learning_rate": 6.0216949171551285e-06,
|
2192 |
+
"loss": 0.0236,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.93,
|
2197 |
+
"learning_rate": 5.969259752714536e-06,
|
2198 |
+
"loss": 0.0182,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 1.94,
|
2203 |
+
"learning_rate": 5.916956577561066e-06,
|
2204 |
+
"loss": 0.0215,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 1.94,
|
2209 |
+
"learning_rate": 5.864787104397194e-06,
|
2210 |
+
"loss": 0.0234,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 1.95,
|
2215 |
+
"learning_rate": 5.81275304154723e-06,
|
2216 |
+
"loss": 0.0228,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 1.95,
|
2221 |
+
"learning_rate": 5.760856092901394e-06,
|
2222 |
+
"loss": 0.0247,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 1.96,
|
2227 |
+
"learning_rate": 5.709097957860001e-06,
|
2228 |
+
"loss": 0.0215,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 1.96,
|
2233 |
+
"learning_rate": 5.6574803312778196e-06,
|
2234 |
+
"loss": 0.0184,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.97,
|
2239 |
+
"learning_rate": 5.6060049034085815e-06,
|
2240 |
+
"loss": 0.0245,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 1.97,
|
2245 |
+
"learning_rate": 5.554673359849632e-06,
|
2246 |
+
"loss": 0.0209,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 1.98,
|
2251 |
+
"learning_rate": 5.5034873814867125e-06,
|
2252 |
+
"loss": 0.022,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 1.98,
|
2257 |
+
"learning_rate": 5.4524486444389455e-06,
|
2258 |
+
"loss": 0.0236,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 1.99,
|
2263 |
+
"learning_rate": 5.40155882000393e-06,
|
2264 |
+
"loss": 0.0192,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 1.99,
|
2269 |
+
"learning_rate": 5.3508195746030304e-06,
|
2270 |
+
"loss": 0.0241,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.0,
|
2275 |
+
"learning_rate": 5.300232569726805e-06,
|
2276 |
+
"loss": 0.0193,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 2.01,
|
2281 |
+
"learning_rate": 5.249799461880569e-06,
|
2282 |
+
"loss": 0.0196,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 2.01,
|
2287 |
+
"learning_rate": 5.199521902530203e-06,
|
2288 |
+
"loss": 0.0222,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 2.02,
|
2293 |
+
"learning_rate": 5.14940153804804e-06,
|
2294 |
+
"loss": 0.0222,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 2.02,
|
2299 |
+
"learning_rate": 5.0994400096589565e-06,
|
2300 |
+
"loss": 0.0213,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 2.03,
|
2305 |
+
"learning_rate": 5.049638953386635e-06,
|
2306 |
+
"loss": 0.0192,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 2.03,
|
2311 |
+
"learning_rate": 5.000000000000003e-06,
|
2312 |
+
"loss": 0.0201,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.04,
|
2317 |
+
"learning_rate": 4.950524774959801e-06,
|
2318 |
+
"loss": 0.0228,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 2.04,
|
2323 |
+
"learning_rate": 4.901214898365396e-06,
|
2324 |
+
"loss": 0.0189,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 2.05,
|
2329 |
+
"learning_rate": 4.852071984901696e-06,
|
2330 |
+
"loss": 0.0134,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 2.05,
|
2335 |
+
"learning_rate": 4.803097643786289e-06,
|
2336 |
+
"loss": 0.0208,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 2.06,
|
2341 |
+
"learning_rate": 4.754293478716755e-06,
|
2342 |
+
"loss": 0.0173,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 2.06,
|
2347 |
+
"learning_rate": 4.705661087818149e-06,
|
2348 |
+
"loss": 0.0174,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 2.07,
|
2353 |
+
"learning_rate": 4.6572020635906535e-06,
|
2354 |
+
"loss": 0.0163,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.07,
|
2359 |
+
"learning_rate": 4.608917992857449e-06,
|
2360 |
+
"loss": 0.019,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 2.08,
|
2365 |
+
"learning_rate": 4.560810456712754e-06,
|
2366 |
+
"loss": 0.0162,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 2.08,
|
2371 |
+
"learning_rate": 4.51288103047003e-06,
|
2372 |
+
"loss": 0.0188,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 2.09,
|
2377 |
+
"learning_rate": 4.465131283610425e-06,
|
2378 |
+
"loss": 0.0201,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 2.1,
|
2383 |
+
"learning_rate": 4.417562779731355e-06,
|
2384 |
+
"loss": 0.0143,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 2.1,
|
2389 |
+
"learning_rate": 4.370177076495312e-06,
|
2390 |
+
"loss": 0.0183,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 2.11,
|
2395 |
+
"learning_rate": 4.322975725578871e-06,
|
2396 |
+
"loss": 0.018,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.11,
|
2401 |
+
"learning_rate": 4.275960272621852e-06,
|
2402 |
+
"loss": 0.0164,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 2.12,
|
2407 |
+
"learning_rate": 4.229132257176735e-06,
|
2408 |
+
"loss": 0.0161,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 2.12,
|
2413 |
+
"learning_rate": 4.182493212658224e-06,
|
2414 |
+
"loss": 0.0179,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 2.13,
|
2419 |
+
"learning_rate": 4.1360446662930445e-06,
|
2420 |
+
"loss": 0.02,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 2.13,
|
2425 |
+
"learning_rate": 4.089788139069936e-06,
|
2426 |
+
"loss": 0.0206,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 2.14,
|
2431 |
+
"learning_rate": 4.0437251456898465e-06,
|
2432 |
+
"loss": 0.0157,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 2.14,
|
2437 |
+
"learning_rate": 3.997857194516321e-06,
|
2438 |
+
"loss": 0.0205,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.15,
|
2443 |
+
"learning_rate": 3.952185787526112e-06,
|
2444 |
+
"loss": 0.0177,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 2.15,
|
2449 |
+
"learning_rate": 3.90671242026002e-06,
|
2450 |
+
"loss": 0.0164,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 2.16,
|
2455 |
+
"learning_rate": 3.86143858177388e-06,
|
2456 |
+
"loss": 0.0208,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 2.16,
|
2461 |
+
"learning_rate": 3.816365754589845e-06,
|
2462 |
+
"loss": 0.0205,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 2.17,
|
2467 |
+
"learning_rate": 3.7714954146478022e-06,
|
2468 |
+
"loss": 0.0176,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 2.17,
|
2473 |
+
"learning_rate": 3.7268290312570622e-06,
|
2474 |
+
"loss": 0.0172,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 2.18,
|
2479 |
+
"learning_rate": 3.6823680670482487e-06,
|
2480 |
+
"loss": 0.0203,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.19,
|
2485 |
+
"learning_rate": 3.638113977925387e-06,
|
2486 |
+
"loss": 0.0198,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 2.19,
|
2491 |
+
"learning_rate": 3.594068213018249e-06,
|
2492 |
+
"loss": 0.0195,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 2.2,
|
2497 |
+
"learning_rate": 3.5502322146348843e-06,
|
2498 |
+
"loss": 0.0174,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 2.2,
|
2503 |
+
"learning_rate": 3.506607418214395e-06,
|
2504 |
+
"loss": 0.0197,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 2.21,
|
2509 |
+
"learning_rate": 3.4631952522799396e-06,
|
2510 |
+
"loss": 0.0214,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 2.21,
|
2515 |
+
"learning_rate": 3.4199971383919538e-06,
|
2516 |
+
"loss": 0.0183,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 2.22,
|
2521 |
+
"learning_rate": 3.377014491101577e-06,
|
2522 |
+
"loss": 0.0174,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 2.22,
|
2527 |
+
"learning_rate": 3.334248717904368e-06,
|
2528 |
+
"loss": 0.0246,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.23,
|
2533 |
+
"learning_rate": 3.2917012191941955e-06,
|
2534 |
+
"loss": 0.0208,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 2.23,
|
2539 |
+
"learning_rate": 3.2493733882173794e-06,
|
2540 |
+
"loss": 0.0194,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 2.24,
|
2545 |
+
"learning_rate": 3.207266611027069e-06,
|
2546 |
+
"loss": 0.0192,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 2.24,
|
2551 |
+
"learning_rate": 3.165382266437874e-06,
|
2552 |
+
"loss": 0.0249,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 2.25,
|
2557 |
+
"learning_rate": 3.123721725980683e-06,
|
2558 |
+
"loss": 0.0205,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 2.25,
|
2563 |
+
"learning_rate": 3.082286353857782e-06,
|
2564 |
+
"loss": 0.026,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 2.26,
|
2569 |
+
"learning_rate": 3.0410775068981615e-06,
|
2570 |
+
"loss": 0.0207,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 2.26,
|
2575 |
+
"learning_rate": 3.0000965345130904e-06,
|
2576 |
+
"loss": 0.0197,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 2.27,
|
2581 |
+
"learning_rate": 2.9593447786519424e-06,
|
2582 |
+
"loss": 0.0186,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 2.28,
|
2587 |
+
"learning_rate": 2.9188235737582416e-06,
|
2588 |
+
"loss": 0.0208,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 2.28,
|
2593 |
+
"learning_rate": 2.8785342467259568e-06,
|
2594 |
+
"loss": 0.015,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 2.29,
|
2599 |
+
"learning_rate": 2.8384781168560693e-06,
|
2600 |
+
"loss": 0.019,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 2.29,
|
2605 |
+
"learning_rate": 2.7986564958133564e-06,
|
2606 |
+
"loss": 0.0151,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 2.3,
|
2611 |
+
"learning_rate": 2.7590706875834563e-06,
|
2612 |
+
"loss": 0.0168,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 2.3,
|
2617 |
+
"learning_rate": 2.719721988430153e-06,
|
2618 |
+
"loss": 0.0186,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 2.31,
|
2623 |
+
"learning_rate": 2.6806116868529364e-06,
|
2624 |
+
"loss": 0.0193,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 2.31,
|
2629 |
+
"learning_rate": 2.6417410635448015e-06,
|
2630 |
+
"loss": 0.0165,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 2.32,
|
2635 |
+
"learning_rate": 2.6031113913503337e-06,
|
2636 |
+
"loss": 0.023,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 2.32,
|
2641 |
+
"learning_rate": 2.5647239352239948e-06,
|
2642 |
+
"loss": 0.0153,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 2.33,
|
2647 |
+
"learning_rate": 2.526579952188735e-06,
|
2648 |
+
"loss": 0.0182,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 2.33,
|
2653 |
+
"learning_rate": 2.4886806912948034e-06,
|
2654 |
+
"loss": 0.0179,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 2.34,
|
2659 |
+
"learning_rate": 2.4510273935788632e-06,
|
2660 |
+
"loss": 0.0173,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 2.34,
|
2665 |
+
"learning_rate": 2.413621292023349e-06,
|
2666 |
+
"loss": 0.0151,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 2.35,
|
2671 |
+
"learning_rate": 2.376463611516098e-06,
|
2672 |
+
"loss": 0.0167,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 2.35,
|
2677 |
+
"learning_rate": 2.339555568810221e-06,
|
2678 |
+
"loss": 0.0219,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 2.36,
|
2683 |
+
"learning_rate": 2.302898372484278e-06,
|
2684 |
+
"loss": 0.0185,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 2.37,
|
2689 |
+
"learning_rate": 2.2664932229027025e-06,
|
2690 |
+
"loss": 0.0175,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 2.37,
|
2695 |
+
"learning_rate": 2.230341312176476e-06,
|
2696 |
+
"loss": 0.0196,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 2.38,
|
2701 |
+
"learning_rate": 2.1944438241241185e-06,
|
2702 |
+
"loss": 0.0213,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 2.38,
|
2707 |
+
"learning_rate": 2.158801934232897e-06,
|
2708 |
+
"loss": 0.0226,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 2.39,
|
2713 |
+
"learning_rate": 2.123416809620351e-06,
|
2714 |
+
"loss": 0.0184,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 2.39,
|
2719 |
+
"learning_rate": 2.0882896089960713e-06,
|
2720 |
+
"loss": 0.0178,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 2.4,
|
2725 |
+
"learning_rate": 2.0534214826237486e-06,
|
2726 |
+
"loss": 0.0144,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 2.4,
|
2731 |
+
"learning_rate": 2.0188135722835233e-06,
|
2732 |
+
"loss": 0.019,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 2.41,
|
2737 |
+
"learning_rate": 1.9844670112345787e-06,
|
2738 |
+
"loss": 0.0195,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 2.41,
|
2743 |
+
"learning_rate": 1.9503829241780416e-06,
|
2744 |
+
"loss": 0.0179,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 2.42,
|
2749 |
+
"learning_rate": 1.9165624272201567e-06,
|
2750 |
+
"loss": 0.0185,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 2.42,
|
2755 |
+
"learning_rate": 1.8830066278357395e-06,
|
2756 |
+
"loss": 0.0179,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 2.43,
|
2761 |
+
"learning_rate": 1.8497166248318876e-06,
|
2762 |
+
"loss": 0.0199,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 2.43,
|
2767 |
+
"learning_rate": 1.8166935083120351e-06,
|
2768 |
+
"loss": 0.0183,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 2.44,
|
2773 |
+
"learning_rate": 1.7839383596402382e-06,
|
2774 |
+
"loss": 0.0208,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.44,
|
2779 |
+
"learning_rate": 1.7514522514057552e-06,
|
2780 |
+
"loss": 0.0165,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 2.45,
|
2785 |
+
"learning_rate": 1.719236247387951e-06,
|
2786 |
+
"loss": 0.0257,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 2.46,
|
2791 |
+
"learning_rate": 1.6872914025214338e-06,
|
2792 |
+
"loss": 0.0193,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 2.46,
|
2797 |
+
"learning_rate": 1.6556187628615273e-06,
|
2798 |
+
"loss": 0.0209,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 2.47,
|
2803 |
+
"learning_rate": 1.6242193655500182e-06,
|
2804 |
+
"loss": 0.0184,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 2.47,
|
2809 |
+
"learning_rate": 1.593094238781191e-06,
|
2810 |
+
"loss": 0.0184,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 2.48,
|
2815 |
+
"learning_rate": 1.5622444017681438e-06,
|
2816 |
+
"loss": 0.0141,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 2.48,
|
2821 |
+
"learning_rate": 1.5316708647094448e-06,
|
2822 |
+
"loss": 0.0166,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 2.49,
|
2827 |
+
"learning_rate": 1.5013746287560227e-06,
|
2828 |
+
"loss": 0.0181,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 2.49,
|
2833 |
+
"learning_rate": 1.4713566859784045e-06,
|
2834 |
+
"loss": 0.0197,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 2.5,
|
2839 |
+
"learning_rate": 1.4416180193342143e-06,
|
2840 |
+
"loss": 0.0203,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 2.5,
|
2845 |
+
"learning_rate": 1.4121596026359951e-06,
|
2846 |
+
"loss": 0.0214,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 2.51,
|
2851 |
+
"learning_rate": 1.3829824005193183e-06,
|
2852 |
+
"loss": 0.0174,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 2.51,
|
2857 |
+
"learning_rate": 1.3540873684111977e-06,
|
2858 |
+
"loss": 0.0164,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 2.52,
|
2863 |
+
"learning_rate": 1.3254754524987956e-06,
|
2864 |
+
"loss": 0.0165,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 2.52,
|
2869 |
+
"learning_rate": 1.2971475896984475e-06,
|
2870 |
+
"loss": 0.0178,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 2.53,
|
2875 |
+
"learning_rate": 1.2691047076249852e-06,
|
2876 |
+
"loss": 0.02,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 2.53,
|
2881 |
+
"learning_rate": 1.2413477245613438e-06,
|
2882 |
+
"loss": 0.0163,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 2.54,
|
2887 |
+
"learning_rate": 1.2138775494285181e-06,
|
2888 |
+
"loss": 0.0179,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 2.54,
|
2893 |
+
"learning_rate": 1.1866950817557743e-06,
|
2894 |
+
"loss": 0.0181,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 2.55,
|
2899 |
+
"learning_rate": 1.1598012116512092e-06,
|
2900 |
+
"loss": 0.0249,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 2.56,
|
2905 |
+
"learning_rate": 1.1331968197725985e-06,
|
2906 |
+
"loss": 0.0205,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 2.56,
|
2911 |
+
"learning_rate": 1.1068827772985645e-06,
|
2912 |
+
"loss": 0.0191,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 2.57,
|
2917 |
+
"learning_rate": 1.0808599459000368e-06,
|
2918 |
+
"loss": 0.0184,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 2.57,
|
2923 |
+
"learning_rate": 1.0551291777120465e-06,
|
2924 |
+
"loss": 0.0189,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 2.58,
|
2929 |
+
"learning_rate": 1.0296913153058164e-06,
|
2930 |
+
"loss": 0.0166,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 2.58,
|
2935 |
+
"learning_rate": 1.004547191661178e-06,
|
2936 |
+
"loss": 0.021,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 2.59,
|
2941 |
+
"learning_rate": 9.796976301392935e-07,
|
2942 |
+
"loss": 0.0182,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 2.59,
|
2947 |
+
"learning_rate": 9.551434444556807e-07,
|
2948 |
+
"loss": 0.0205,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 2.6,
|
2953 |
+
"learning_rate": 9.308854386535849e-07,
|
2954 |
+
"loss": 0.0206,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 2.6,
|
2959 |
+
"learning_rate": 9.069244070776428e-07,
|
2960 |
+
"loss": 0.0157,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 2.61,
|
2965 |
+
"learning_rate": 8.832611343478681e-07,
|
2966 |
+
"loss": 0.0174,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 2.61,
|
2971 |
+
"learning_rate": 8.598963953339667e-07,
|
2972 |
+
"loss": 0.0246,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 2.62,
|
2977 |
+
"learning_rate": 8.368309551299536e-07,
|
2978 |
+
"loss": 0.0166,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 2.62,
|
2983 |
+
"learning_rate": 8.140655690291044e-07,
|
2984 |
+
"loss": 0.0184,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 2.63,
|
2989 |
+
"learning_rate": 7.916009824992255e-07,
|
2990 |
+
"loss": 0.0168,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 2.63,
|
2995 |
+
"learning_rate": 7.694379311582401e-07,
|
2996 |
+
"loss": 0.0189,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 2.64,
|
3001 |
+
"learning_rate": 7.475771407500943e-07,
|
3002 |
+
"loss": 0.0186,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 2.65,
|
3007 |
+
"learning_rate": 7.260193271210003e-07,
|
3008 |
+
"loss": 0.0188,
|
3009 |
+
"step": 500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 2.65,
|
3013 |
+
"learning_rate": 7.047651961959978e-07,
|
3014 |
+
"loss": 0.0164,
|
3015 |
+
"step": 501
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 2.66,
|
3019 |
+
"learning_rate": 6.838154439558254e-07,
|
3020 |
+
"loss": 0.0197,
|
3021 |
+
"step": 502
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 2.66,
|
3025 |
+
"learning_rate": 6.631707564141454e-07,
|
3026 |
+
"loss": 0.0179,
|
3027 |
+
"step": 503
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 2.67,
|
3031 |
+
"learning_rate": 6.428318095950648e-07,
|
3032 |
+
"loss": 0.0219,
|
3033 |
+
"step": 504
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 2.67,
|
3037 |
+
"learning_rate": 6.227992695110097e-07,
|
3038 |
+
"loss": 0.0147,
|
3039 |
+
"step": 505
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 2.68,
|
3043 |
+
"learning_rate": 6.030737921409169e-07,
|
3044 |
+
"loss": 0.0172,
|
3045 |
+
"step": 506
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 2.68,
|
3049 |
+
"learning_rate": 5.836560234087418e-07,
|
3050 |
+
"loss": 0.0206,
|
3051 |
+
"step": 507
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 2.69,
|
3055 |
+
"learning_rate": 5.645465991623167e-07,
|
3056 |
+
"loss": 0.0176,
|
3057 |
+
"step": 508
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 2.69,
|
3061 |
+
"learning_rate": 5.457461451525315e-07,
|
3062 |
+
"loss": 0.0187,
|
3063 |
+
"step": 509
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 2.7,
|
3067 |
+
"learning_rate": 5.272552770128314e-07,
|
3068 |
+
"loss": 0.0183,
|
3069 |
+
"step": 510
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 2.7,
|
3073 |
+
"learning_rate": 5.090746002390734e-07,
|
3074 |
+
"loss": 0.018,
|
3075 |
+
"step": 511
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 2.71,
|
3079 |
+
"learning_rate": 4.912047101696848e-07,
|
3080 |
+
"loss": 0.018,
|
3081 |
+
"step": 512
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 2.71,
|
3085 |
+
"learning_rate": 4.73646191966175e-07,
|
3086 |
+
"loss": 0.0162,
|
3087 |
+
"step": 513
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 2.72,
|
3091 |
+
"learning_rate": 4.563996205939747e-07,
|
3092 |
+
"loss": 0.0189,
|
3093 |
+
"step": 514
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 2.72,
|
3097 |
+
"learning_rate": 4.3946556080360916e-07,
|
3098 |
+
"loss": 0.0156,
|
3099 |
+
"step": 515
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 2.73,
|
3103 |
+
"learning_rate": 4.2284456711219723e-07,
|
3104 |
+
"loss": 0.017,
|
3105 |
+
"step": 516
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 2.74,
|
3109 |
+
"learning_rate": 4.065371837853016e-07,
|
3110 |
+
"loss": 0.0181,
|
3111 |
+
"step": 517
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 2.74,
|
3115 |
+
"learning_rate": 3.9054394481910507e-07,
|
3116 |
+
"loss": 0.0167,
|
3117 |
+
"step": 518
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 2.75,
|
3121 |
+
"learning_rate": 3.748653739229191e-07,
|
3122 |
+
"loss": 0.0198,
|
3123 |
+
"step": 519
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 2.75,
|
3127 |
+
"learning_rate": 3.595019845020442e-07,
|
3128 |
+
"loss": 0.0162,
|
3129 |
+
"step": 520
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 2.76,
|
3133 |
+
"learning_rate": 3.444542796409478e-07,
|
3134 |
+
"loss": 0.0151,
|
3135 |
+
"step": 521
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 2.76,
|
3139 |
+
"learning_rate": 3.2972275208679625e-07,
|
3140 |
+
"loss": 0.0237,
|
3141 |
+
"step": 522
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 2.77,
|
3145 |
+
"learning_rate": 3.1530788423332124e-07,
|
3146 |
+
"loss": 0.0172,
|
3147 |
+
"step": 523
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 2.77,
|
3151 |
+
"learning_rate": 3.012101481050156e-07,
|
3152 |
+
"loss": 0.0224,
|
3153 |
+
"step": 524
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 2.78,
|
3157 |
+
"learning_rate": 2.8743000534168673e-07,
|
3158 |
+
"loss": 0.0172,
|
3159 |
+
"step": 525
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 2.78,
|
3163 |
+
"learning_rate": 2.739679071833301e-07,
|
3164 |
+
"loss": 0.0207,
|
3165 |
+
"step": 526
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 2.79,
|
3169 |
+
"learning_rate": 2.608242944553607e-07,
|
3170 |
+
"loss": 0.0183,
|
3171 |
+
"step": 527
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 2.79,
|
3175 |
+
"learning_rate": 2.479995975541749e-07,
|
3176 |
+
"loss": 0.0219,
|
3177 |
+
"step": 528
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 2.8,
|
3181 |
+
"learning_rate": 2.354942364330559e-07,
|
3182 |
+
"loss": 0.0169,
|
3183 |
+
"step": 529
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 2.8,
|
3187 |
+
"learning_rate": 2.2330862058842273e-07,
|
3188 |
+
"loss": 0.023,
|
3189 |
+
"step": 530
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 2.81,
|
3193 |
+
"learning_rate": 2.1144314904642194e-07,
|
3194 |
+
"loss": 0.0138,
|
3195 |
+
"step": 531
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 2.81,
|
3199 |
+
"learning_rate": 1.9989821034986034e-07,
|
3200 |
+
"loss": 0.0168,
|
3201 |
+
"step": 532
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 2.82,
|
3205 |
+
"learning_rate": 1.8867418254548298e-07,
|
3206 |
+
"loss": 0.0163,
|
3207 |
+
"step": 533
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 2.83,
|
3211 |
+
"learning_rate": 1.7777143317159407e-07,
|
3212 |
+
"loss": 0.0175,
|
3213 |
+
"step": 534
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 2.83,
|
3217 |
+
"learning_rate": 1.6719031924601558e-07,
|
3218 |
+
"loss": 0.0172,
|
3219 |
+
"step": 535
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 2.84,
|
3223 |
+
"learning_rate": 1.569311872544066e-07,
|
3224 |
+
"loss": 0.017,
|
3225 |
+
"step": 536
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 2.84,
|
3229 |
+
"learning_rate": 1.4699437313891007e-07,
|
3230 |
+
"loss": 0.0166,
|
3231 |
+
"step": 537
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 2.85,
|
3235 |
+
"learning_rate": 1.373802022871551e-07,
|
3236 |
+
"loss": 0.0165,
|
3237 |
+
"step": 538
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 2.85,
|
3241 |
+
"learning_rate": 1.2808898952160198e-07,
|
3242 |
+
"loss": 0.018,
|
3243 |
+
"step": 539
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 2.86,
|
3247 |
+
"learning_rate": 1.1912103908922945e-07,
|
3248 |
+
"loss": 0.0187,
|
3249 |
+
"step": 540
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 2.86,
|
3253 |
+
"learning_rate": 1.1047664465157592e-07,
|
3254 |
+
"loss": 0.017,
|
3255 |
+
"step": 541
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 2.87,
|
3259 |
+
"learning_rate": 1.02156089275125e-07,
|
3260 |
+
"loss": 0.0166,
|
3261 |
+
"step": 542
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 2.87,
|
3265 |
+
"learning_rate": 9.415964542203059e-08,
|
3266 |
+
"loss": 0.0166,
|
3267 |
+
"step": 543
|
3268 |
+
},
|
3269 |
+
{
|
3270 |
+
"epoch": 2.88,
|
3271 |
+
"learning_rate": 8.648757494119752e-08,
|
3272 |
+
"loss": 0.0169,
|
3273 |
+
"step": 544
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 2.88,
|
3277 |
+
"learning_rate": 7.914012905970936e-08,
|
3278 |
+
"loss": 0.02,
|
3279 |
+
"step": 545
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 2.89,
|
3283 |
+
"learning_rate": 7.21175483745995e-08,
|
3284 |
+
"loss": 0.016,
|
3285 |
+
"step": 546
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 2.89,
|
3289 |
+
"learning_rate": 6.542006284497304e-08,
|
3290 |
+
"loss": 0.0163,
|
3291 |
+
"step": 547
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 2.9,
|
3295 |
+
"learning_rate": 5.90478917844739e-08,
|
3296 |
+
"loss": 0.0228,
|
3297 |
+
"step": 548
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 2.9,
|
3301 |
+
"learning_rate": 5.300124385410943e-08,
|
3302 |
+
"loss": 0.0191,
|
3303 |
+
"step": 549
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 2.91,
|
3307 |
+
"learning_rate": 4.728031705541369e-08,
|
3308 |
+
"loss": 0.0151,
|
3309 |
+
"step": 550
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 2.92,
|
3313 |
+
"learning_rate": 4.188529872396374e-08,
|
3314 |
+
"loss": 0.0164,
|
3315 |
+
"step": 551
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 2.92,
|
3319 |
+
"learning_rate": 3.681636552324452e-08,
|
3320 |
+
"loss": 0.0179,
|
3321 |
+
"step": 552
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 2.93,
|
3325 |
+
"learning_rate": 3.2073683438866856e-08,
|
3326 |
+
"loss": 0.0175,
|
3327 |
+
"step": 553
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 2.93,
|
3331 |
+
"learning_rate": 2.765740777313064e-08,
|
3332 |
+
"loss": 0.02,
|
3333 |
+
"step": 554
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 2.94,
|
3337 |
+
"learning_rate": 2.3567683139936736e-08,
|
3338 |
+
"loss": 0.0158,
|
3339 |
+
"step": 555
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 2.94,
|
3343 |
+
"learning_rate": 1.9804643460056284e-08,
|
3344 |
+
"loss": 0.0229,
|
3345 |
+
"step": 556
|
3346 |
+
},
|
3347 |
+
{
|
3348 |
+
"epoch": 2.95,
|
3349 |
+
"learning_rate": 1.636841195674199e-08,
|
3350 |
+
"loss": 0.0166,
|
3351 |
+
"step": 557
|
3352 |
+
},
|
3353 |
+
{
|
3354 |
+
"epoch": 2.95,
|
3355 |
+
"learning_rate": 1.325910115169471e-08,
|
3356 |
+
"loss": 0.0188,
|
3357 |
+
"step": 558
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 2.96,
|
3361 |
+
"learning_rate": 1.0476812861377471e-08,
|
3362 |
+
"loss": 0.0186,
|
3363 |
+
"step": 559
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 2.96,
|
3367 |
+
"learning_rate": 8.021638193682624e-09,
|
3368 |
+
"loss": 0.0188,
|
3369 |
+
"step": 560
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 2.97,
|
3373 |
+
"learning_rate": 5.8936575449475284e-09,
|
3374 |
+
"loss": 0.0214,
|
3375 |
+
"step": 561
|
3376 |
+
},
|
3377 |
+
{
|
3378 |
+
"epoch": 2.97,
|
3379 |
+
"learning_rate": 4.092940597322237e-09,
|
3380 |
+
"loss": 0.0174,
|
3381 |
+
"step": 562
|
3382 |
+
},
|
3383 |
+
{
|
3384 |
+
"epoch": 2.98,
|
3385 |
+
"learning_rate": 2.6195463164901956e-09,
|
3386 |
+
"loss": 0.0193,
|
3387 |
+
"step": 563
|
3388 |
+
},
|
3389 |
+
{
|
3390 |
+
"epoch": 2.98,
|
3391 |
+
"learning_rate": 1.47352294973091e-09,
|
3392 |
+
"loss": 0.0151,
|
3393 |
+
"step": 564
|
3394 |
+
},
|
3395 |
+
{
|
3396 |
+
"epoch": 2.99,
|
3397 |
+
"learning_rate": 6.54908024348977e-10,
|
3398 |
+
"loss": 0.0151,
|
3399 |
+
"step": 565
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 2.99,
|
3403 |
+
"learning_rate": 1.6372834643618718e-10,
|
3404 |
+
"loss": 0.0218,
|
3405 |
+
"step": 566
|
3406 |
+
},
|
3407 |
+
{
|
3408 |
+
"epoch": 3.0,
|
3409 |
+
"learning_rate": 0.0,
|
3410 |
+
"loss": 0.018,
|
3411 |
+
"step": 567
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 3.0,
|
3415 |
+
"step": 567,
|
3416 |
+
"total_flos": 0.0,
|
3417 |
+
"train_loss": 0.030306552032524525,
|
3418 |
+
"train_runtime": 9233.9434,
|
3419 |
+
"train_samples_per_second": 7.819,
|
3420 |
+
"train_steps_per_second": 0.061
|
3421 |
+
}
|
3422 |
+
],
|
3423 |
+
"logging_steps": 1.0,
|
3424 |
+
"max_steps": 567,
|
3425 |
+
"num_input_tokens_seen": 0,
|
3426 |
+
"num_train_epochs": 3,
|
3427 |
+
"save_steps": 500,
|
3428 |
+
"total_flos": 0.0,
|
3429 |
+
"train_batch_size": 16,
|
3430 |
+
"trial_name": null,
|
3431 |
+
"trial_params": null
|
3432 |
+
}
|
training_args.bin
ADDED
Binary file (6.65 kB). View file
|
|
visual_encoder.py
ADDED
@@ -0,0 +1,922 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Any, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
5 |
+
from transformers.modeling_utils import PreTrainedModel
|
6 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from icecream import ic
|
13 |
+
|
14 |
+
def get_abs_pos(abs_pos, tgt_size):
|
15 |
+
# abs_pos: L, C
|
16 |
+
# tgt_size: M
|
17 |
+
# return: M, C
|
18 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
19 |
+
tgt_size = int(math.sqrt(tgt_size))
|
20 |
+
dtype = abs_pos.dtype
|
21 |
+
|
22 |
+
if src_size != tgt_size:
|
23 |
+
return F.interpolate(
|
24 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
25 |
+
size=(tgt_size, tgt_size),
|
26 |
+
mode="bicubic",
|
27 |
+
align_corners=False,
|
28 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
29 |
+
else:
|
30 |
+
return abs_pos
|
31 |
+
|
32 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
33 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
34 |
+
"""
|
35 |
+
grid_size: int of the grid height and width
|
36 |
+
return:
|
37 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
38 |
+
"""
|
39 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
40 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
41 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
42 |
+
grid = np.stack(grid, axis=0)
|
43 |
+
|
44 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
45 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
46 |
+
if cls_token:
|
47 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
48 |
+
return pos_embed
|
49 |
+
|
50 |
+
|
51 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
52 |
+
assert embed_dim % 2 == 0
|
53 |
+
|
54 |
+
# use half of dimensions to encode grid_h
|
55 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
56 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
57 |
+
|
58 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
59 |
+
return emb
|
60 |
+
|
61 |
+
|
62 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
63 |
+
"""
|
64 |
+
embed_dim: output dimension for each position
|
65 |
+
pos: a list of positions to be encoded: size (M,)
|
66 |
+
out: (M, D)
|
67 |
+
"""
|
68 |
+
assert embed_dim % 2 == 0
|
69 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
70 |
+
omega /= embed_dim / 2.
|
71 |
+
omega = 1. / 10000**omega # (D/2,)
|
72 |
+
|
73 |
+
pos = pos.reshape(-1) # (M,)
|
74 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
75 |
+
|
76 |
+
emb_sin = np.sin(out) # (M, D/2)
|
77 |
+
emb_cos = np.cos(out) # (M, D/2)
|
78 |
+
|
79 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
80 |
+
return emb
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
class MplugOwlVisionEmbeddings(nn.Module):
|
85 |
+
def __init__(self, config):
|
86 |
+
super().__init__()
|
87 |
+
self.config = config
|
88 |
+
self.hidden_size = config.hidden_size
|
89 |
+
self.image_size = config.image_size
|
90 |
+
self.patch_size = config.patch_size
|
91 |
+
|
92 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
93 |
+
|
94 |
+
self.patch_embed = nn.Conv2d(
|
95 |
+
in_channels=3,
|
96 |
+
out_channels=self.hidden_size,
|
97 |
+
kernel_size=self.patch_size,
|
98 |
+
stride=self.patch_size,
|
99 |
+
bias=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
103 |
+
|
104 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
105 |
+
|
106 |
+
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
107 |
+
|
108 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
109 |
+
batch_size = pixel_values.size(0)
|
110 |
+
image_embeds = self.patch_embed(pixel_values)
|
111 |
+
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
112 |
+
|
113 |
+
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
|
114 |
+
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
115 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
|
116 |
+
embeddings = self.pre_layernorm(embeddings)
|
117 |
+
return embeddings
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class MplugOwlVisionAttention(nn.Module):
|
122 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
123 |
+
|
124 |
+
def __init__(self, config):
|
125 |
+
super().__init__()
|
126 |
+
self.config = config
|
127 |
+
self.hidden_size = config.hidden_size
|
128 |
+
self.num_heads = config.num_attention_heads
|
129 |
+
self.head_dim = self.hidden_size // self.num_heads
|
130 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
131 |
+
raise ValueError(
|
132 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
133 |
+
f" {self.num_heads})."
|
134 |
+
)
|
135 |
+
self.scale = self.head_dim**-0.5
|
136 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
137 |
+
|
138 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
139 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
140 |
+
|
141 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
142 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
143 |
+
|
144 |
+
def forward(
|
145 |
+
self,
|
146 |
+
hidden_states: torch.Tensor,
|
147 |
+
head_mask: Optional[torch.Tensor] = None,
|
148 |
+
output_attentions: Optional[bool] = False,
|
149 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
150 |
+
"""Input shape: Batch x Time x Channel"""
|
151 |
+
|
152 |
+
bsz, seq_len, embed_dim = hidden_states.size()
|
153 |
+
|
154 |
+
mixed_qkv = self.query_key_value(hidden_states)
|
155 |
+
|
156 |
+
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
157 |
+
3, 0, 2, 1, 4
|
158 |
+
) # [3, b, np, sq, hn]
|
159 |
+
query_states, key_states, value_states = (
|
160 |
+
mixed_qkv[0],
|
161 |
+
mixed_qkv[1],
|
162 |
+
mixed_qkv[2],
|
163 |
+
)
|
164 |
+
# if self.config.use_flash_attn and flash_attn_func is not None:
|
165 |
+
if False:
|
166 |
+
# [b*sq, np, hn]
|
167 |
+
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
168 |
+
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
169 |
+
|
170 |
+
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
171 |
+
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
172 |
+
|
173 |
+
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
174 |
+
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
175 |
+
|
176 |
+
cu_seqlens = torch.arange(
|
177 |
+
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
178 |
+
)
|
179 |
+
|
180 |
+
context_layer = flash_attn_func(
|
181 |
+
query_states,
|
182 |
+
key_states,
|
183 |
+
value_states,
|
184 |
+
cu_seqlens,
|
185 |
+
cu_seqlens,
|
186 |
+
seq_len,
|
187 |
+
seq_len,
|
188 |
+
self.dropout if self.training else 0.0,
|
189 |
+
softmax_scale=self.scale,
|
190 |
+
causal=False,
|
191 |
+
return_attn_probs=False,
|
192 |
+
)
|
193 |
+
# [b*sq, np, hn] => [b, sq, np, hn]
|
194 |
+
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
195 |
+
else:
|
196 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
197 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
198 |
+
|
199 |
+
attention_scores = attention_scores * self.scale
|
200 |
+
|
201 |
+
# Normalize the attention scores to probabilities.
|
202 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
203 |
+
|
204 |
+
# This is actually dropping out entire tokens to attend to, which might
|
205 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
206 |
+
attention_probs = self.dropout(attention_probs)
|
207 |
+
|
208 |
+
# Mask heads if we want to
|
209 |
+
if head_mask is not None:
|
210 |
+
attention_probs = attention_probs * head_mask
|
211 |
+
|
212 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
213 |
+
|
214 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
215 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
216 |
+
|
217 |
+
output = self.dense(context_layer)
|
218 |
+
|
219 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
220 |
+
|
221 |
+
return outputs
|
222 |
+
|
223 |
+
|
224 |
+
class QuickGELU(nn.Module):
|
225 |
+
def forward(self, x: torch.Tensor):
|
226 |
+
return x * torch.sigmoid(1.702 * x)
|
227 |
+
|
228 |
+
|
229 |
+
class MplugOwlMLP(nn.Module):
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
self.config = config
|
233 |
+
self.activation_fn = QuickGELU()
|
234 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
235 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
236 |
+
|
237 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
238 |
+
hidden_states = self.fc1(hidden_states)
|
239 |
+
hidden_states = self.activation_fn(hidden_states)
|
240 |
+
hidden_states = self.fc2(hidden_states)
|
241 |
+
return hidden_states
|
242 |
+
|
243 |
+
|
244 |
+
class MplugOwlVisionEncoderLayer(nn.Module):
|
245 |
+
def __init__(self, config):
|
246 |
+
super().__init__()
|
247 |
+
self.hidden_size = config.hidden_size
|
248 |
+
self.self_attn = MplugOwlVisionAttention(config)
|
249 |
+
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
250 |
+
self.mlp = MplugOwlMLP(config)
|
251 |
+
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
252 |
+
|
253 |
+
def forward(
|
254 |
+
self,
|
255 |
+
hidden_states: torch.Tensor,
|
256 |
+
attention_mask: torch.Tensor,
|
257 |
+
output_attentions: Optional[bool] = False,
|
258 |
+
) -> Tuple[torch.FloatTensor]:
|
259 |
+
"""
|
260 |
+
Args:
|
261 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
262 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
263 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
264 |
+
`(config.encoder_attention_heads,)`.
|
265 |
+
output_attentions (`bool`, *optional*):
|
266 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
267 |
+
returned tensors for more detail.
|
268 |
+
"""
|
269 |
+
residual = hidden_states
|
270 |
+
|
271 |
+
hidden_states = self.input_layernorm(hidden_states)
|
272 |
+
hidden_states, attn_weights = self.self_attn(
|
273 |
+
hidden_states=hidden_states,
|
274 |
+
head_mask=attention_mask,
|
275 |
+
output_attentions=output_attentions,
|
276 |
+
)
|
277 |
+
hidden_states = hidden_states + residual
|
278 |
+
residual = hidden_states
|
279 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
280 |
+
hidden_states = self.mlp(hidden_states)
|
281 |
+
|
282 |
+
hidden_states = hidden_states + residual
|
283 |
+
|
284 |
+
outputs = (hidden_states,)
|
285 |
+
|
286 |
+
if output_attentions:
|
287 |
+
outputs += (attn_weights,)
|
288 |
+
|
289 |
+
return outputs
|
290 |
+
|
291 |
+
|
292 |
+
class MplugOwlVisionEncoder(nn.Module):
|
293 |
+
"""
|
294 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
295 |
+
[`MplugOwlVisionEncoderLayer`].
|
296 |
+
|
297 |
+
Args:
|
298 |
+
config (`MplugOwlVisionConfig`):
|
299 |
+
The corresponding vision configuration for the `MplugOwlEncoder`.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, config):
|
303 |
+
super().__init__()
|
304 |
+
self.config = config
|
305 |
+
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
306 |
+
self.gradient_checkpointing = True
|
307 |
+
|
308 |
+
def forward(
|
309 |
+
self,
|
310 |
+
inputs_embeds,
|
311 |
+
attention_mask: Optional[torch.Tensor] = None,
|
312 |
+
output_attentions: Optional[bool] = None,
|
313 |
+
output_hidden_states: Optional[bool] = None,
|
314 |
+
return_dict: Optional[bool] = None,
|
315 |
+
) -> Union[Tuple, BaseModelOutput]:
|
316 |
+
r"""
|
317 |
+
Args:
|
318 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
319 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
320 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
321 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
322 |
+
|
323 |
+
- 1 for tokens that are **not masked**,
|
324 |
+
- 0 for tokens that are **masked**.
|
325 |
+
|
326 |
+
[What are attention masks?](../glossary#attention-mask)
|
327 |
+
output_attentions (`bool`, *optional*):
|
328 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
329 |
+
returned tensors for more detail.
|
330 |
+
output_hidden_states (`bool`, *optional*):
|
331 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
332 |
+
for more detail.
|
333 |
+
return_dict (`bool`, *optional*):
|
334 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
335 |
+
"""
|
336 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
337 |
+
output_hidden_states = (
|
338 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
339 |
+
)
|
340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
341 |
+
|
342 |
+
encoder_states = () if output_hidden_states else None
|
343 |
+
all_attentions = () if output_attentions else None
|
344 |
+
|
345 |
+
hidden_states = inputs_embeds
|
346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
347 |
+
if output_hidden_states:
|
348 |
+
encoder_states = encoder_states + (hidden_states,)
|
349 |
+
if self.gradient_checkpointing and self.training:
|
350 |
+
|
351 |
+
def create_custom_forward(module):
|
352 |
+
def custom_forward(*inputs):
|
353 |
+
return module(*inputs, output_attentions)
|
354 |
+
|
355 |
+
return custom_forward
|
356 |
+
|
357 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
358 |
+
create_custom_forward(encoder_layer),
|
359 |
+
hidden_states,
|
360 |
+
attention_mask,
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
layer_outputs = encoder_layer(
|
364 |
+
hidden_states,
|
365 |
+
attention_mask,
|
366 |
+
output_attentions=output_attentions,
|
367 |
+
)
|
368 |
+
|
369 |
+
hidden_states = layer_outputs[0]
|
370 |
+
|
371 |
+
if output_attentions:
|
372 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
373 |
+
|
374 |
+
if output_hidden_states:
|
375 |
+
encoder_states = encoder_states + (hidden_states,)
|
376 |
+
|
377 |
+
if not return_dict:
|
378 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
379 |
+
return BaseModelOutput(
|
380 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
381 |
+
)
|
382 |
+
|
383 |
+
|
384 |
+
class MplugOwlVisionModel(PreTrainedModel):
|
385 |
+
main_input_name = "pixel_values"
|
386 |
+
_no_split_modules = ["MplugOwlVisionEncoderLayer"]
|
387 |
+
|
388 |
+
def __init__(self, config):
|
389 |
+
super().__init__(config)
|
390 |
+
self.config = config
|
391 |
+
self.hidden_size = config.hidden_size
|
392 |
+
|
393 |
+
self.embeddings = MplugOwlVisionEmbeddings(config)
|
394 |
+
self.encoder = MplugOwlVisionEncoder(config)
|
395 |
+
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
396 |
+
|
397 |
+
self.post_init()
|
398 |
+
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
407 |
+
r"""
|
408 |
+
Returns:
|
409 |
+
|
410 |
+
"""
|
411 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
412 |
+
output_hidden_states = (
|
413 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
414 |
+
)
|
415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
416 |
+
|
417 |
+
if pixel_values is None:
|
418 |
+
raise ValueError("You have to specify pixel_values")
|
419 |
+
|
420 |
+
hidden_states = self.embeddings(pixel_values)
|
421 |
+
|
422 |
+
encoder_outputs = self.encoder(
|
423 |
+
inputs_embeds=hidden_states,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
output_hidden_states=output_hidden_states,
|
426 |
+
return_dict=return_dict,
|
427 |
+
)
|
428 |
+
|
429 |
+
last_hidden_state = encoder_outputs[0]
|
430 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
431 |
+
|
432 |
+
pooled_output = last_hidden_state[:, 0, :]
|
433 |
+
pooled_output = self.post_layernorm(pooled_output)
|
434 |
+
|
435 |
+
if not return_dict:
|
436 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
437 |
+
|
438 |
+
return BaseModelOutputWithPooling(
|
439 |
+
last_hidden_state=last_hidden_state,
|
440 |
+
pooler_output=pooled_output,
|
441 |
+
hidden_states=encoder_outputs.hidden_states,
|
442 |
+
attentions=encoder_outputs.attentions,
|
443 |
+
)
|
444 |
+
|
445 |
+
def get_input_embeddings(self):
|
446 |
+
return self.embeddings
|
447 |
+
|
448 |
+
|
449 |
+
class MplugOwlVisualAbstractorMLP(nn.Module):
|
450 |
+
def __init__(self, config):
|
451 |
+
super().__init__()
|
452 |
+
self.config = config
|
453 |
+
in_features = config.hidden_size
|
454 |
+
self.act = nn.SiLU()
|
455 |
+
|
456 |
+
self.w1 = nn.Linear(in_features, config.intermediate_size)
|
457 |
+
self.w2 = nn.Linear(config.intermediate_size, in_features)
|
458 |
+
self.w3 = nn.Linear(in_features, config.intermediate_size)
|
459 |
+
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
460 |
+
|
461 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
462 |
+
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
|
463 |
+
hidden_states = self.ffn_ln(hidden_states)
|
464 |
+
hidden_states = self.w2(hidden_states)
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
|
468 |
+
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module):
|
469 |
+
def __init__(self, config):
|
470 |
+
super().__init__()
|
471 |
+
self.config = config
|
472 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
473 |
+
raise ValueError(
|
474 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
475 |
+
% (config.hidden_size, config.num_attention_heads)
|
476 |
+
)
|
477 |
+
|
478 |
+
self.num_attention_heads = config.num_attention_heads
|
479 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
480 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
481 |
+
|
482 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
483 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
484 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
485 |
+
|
486 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
487 |
+
self.save_attention = False
|
488 |
+
|
489 |
+
# self.q_pos_embed = nn.Parameter(
|
490 |
+
# torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
491 |
+
# ).requires_grad_(False)
|
492 |
+
# grids = config.grid_size
|
493 |
+
# self.k_pos_embed = nn.Parameter(
|
494 |
+
# torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
495 |
+
# ).requires_grad_(False)
|
496 |
+
grids = config.grid_size
|
497 |
+
self.register_buffer(
|
498 |
+
'q_pos_embed',
|
499 |
+
torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
500 |
+
)
|
501 |
+
self.register_buffer(
|
502 |
+
'k_pos_embed',
|
503 |
+
torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
504 |
+
)
|
505 |
+
|
506 |
+
|
507 |
+
def save_attn_gradients(self, attn_gradients):
|
508 |
+
self.attn_gradients = attn_gradients
|
509 |
+
|
510 |
+
def get_attn_gradients(self):
|
511 |
+
return self.attn_gradients
|
512 |
+
|
513 |
+
def save_attention_map(self, attention_map):
|
514 |
+
self.attention_map = attention_map
|
515 |
+
|
516 |
+
def get_attention_map(self):
|
517 |
+
return self.attention_map
|
518 |
+
|
519 |
+
def transpose_for_scores(self, x):
|
520 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
521 |
+
x = x.view(*new_x_shape)
|
522 |
+
return x.permute(0, 2, 1, 3)
|
523 |
+
|
524 |
+
def forward(
|
525 |
+
self,
|
526 |
+
hidden_states,
|
527 |
+
attention_mask=None,
|
528 |
+
head_mask=None,
|
529 |
+
encoder_hidden_states=None,
|
530 |
+
encoder_attention_mask=None,
|
531 |
+
past_key_value=None,
|
532 |
+
output_attentions=False,
|
533 |
+
):
|
534 |
+
# If this is instantiated as a cross-attention module, the keys
|
535 |
+
# and values come from an encoder; the attention mask needs to be
|
536 |
+
# such that the encoder's padding tokens are not attended to.
|
537 |
+
|
538 |
+
qk_pos_embed = torch.cat([self.q_pos_embed, self.k_pos_embed], dim = 0).unsqueeze(0).to(dtype=hidden_states.dtype)
|
539 |
+
|
540 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed))
|
541 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
542 |
+
attention_mask = encoder_attention_mask
|
543 |
+
|
544 |
+
mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype))
|
545 |
+
|
546 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
547 |
+
|
548 |
+
past_key_value = (key_layer, value_layer)
|
549 |
+
|
550 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
551 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
552 |
+
|
553 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
554 |
+
|
555 |
+
if attention_mask is not None:
|
556 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
557 |
+
attention_scores = attention_scores + attention_mask
|
558 |
+
|
559 |
+
# Normalize the attention scores to probabilities.
|
560 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
561 |
+
|
562 |
+
if self.save_attention:
|
563 |
+
self.save_attention_map(attention_probs)
|
564 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
565 |
+
|
566 |
+
# This is actually dropping out entire tokens to attend to, which might
|
567 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
568 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
569 |
+
|
570 |
+
# Mask heads if we want to
|
571 |
+
if head_mask is not None:
|
572 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
573 |
+
|
574 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
575 |
+
|
576 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
577 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
578 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
579 |
+
|
580 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
581 |
+
|
582 |
+
outputs = outputs + (past_key_value,)
|
583 |
+
return outputs
|
584 |
+
|
585 |
+
|
586 |
+
class MplugOwlVisualAbstractorCrossOutput(nn.Module):
|
587 |
+
def __init__(self, config):
|
588 |
+
super().__init__()
|
589 |
+
dim = config.hidden_size
|
590 |
+
self.out_proj = nn.Linear(dim, dim, bias=True)
|
591 |
+
self.norm2 = nn.LayerNorm(dim)
|
592 |
+
self.mlp = MplugOwlVisualAbstractorMLP(config)
|
593 |
+
|
594 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
595 |
+
input_tensor = input_tensor + self.out_proj(hidden_states)
|
596 |
+
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
|
597 |
+
return input_tensor
|
598 |
+
|
599 |
+
|
600 |
+
class MplugOwlVisualAbstractorAttention(nn.Module):
|
601 |
+
def __init__(self, config):
|
602 |
+
super().__init__()
|
603 |
+
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config)
|
604 |
+
self.output = MplugOwlVisualAbstractorCrossOutput(config)
|
605 |
+
self.pruned_heads = set()
|
606 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
607 |
+
self.normk = nn.LayerNorm(config.hidden_size)
|
608 |
+
|
609 |
+
def prune_heads(self, heads):
|
610 |
+
if len(heads) == 0:
|
611 |
+
return
|
612 |
+
heads, index = find_pruneable_heads_and_indices(
|
613 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
614 |
+
)
|
615 |
+
|
616 |
+
# Prune linear layers
|
617 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
618 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
619 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
620 |
+
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1)
|
621 |
+
|
622 |
+
# Update hyper params and store pruned heads
|
623 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
624 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
625 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
626 |
+
|
627 |
+
def forward(
|
628 |
+
self,
|
629 |
+
hidden_states: torch.Tensor,
|
630 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
631 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
632 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
633 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
634 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
635 |
+
output_attentions: Optional[bool] = False,
|
636 |
+
) -> Tuple[torch.Tensor]:
|
637 |
+
# HACK we apply norm on q and k
|
638 |
+
hidden_states = self.norm1(hidden_states)
|
639 |
+
encoder_hidden_states = self.normk(encoder_hidden_states)
|
640 |
+
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
641 |
+
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1)
|
642 |
+
self_outputs = self.attention(
|
643 |
+
hidden_states,
|
644 |
+
attention_mask,
|
645 |
+
head_mask,
|
646 |
+
encoder_hidden_states,
|
647 |
+
encoder_attention_mask,
|
648 |
+
past_key_value,
|
649 |
+
output_attentions,
|
650 |
+
)
|
651 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
652 |
+
# add attentions if we output them
|
653 |
+
outputs = (attention_output,) + self_outputs[1:]
|
654 |
+
return outputs
|
655 |
+
|
656 |
+
|
657 |
+
class MplugOwlVisualAbstractorLayer(nn.Module):
|
658 |
+
def __init__(self, config, layer_idx):
|
659 |
+
super().__init__()
|
660 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
661 |
+
self.seq_len_dim = 1
|
662 |
+
|
663 |
+
self.layer_idx = layer_idx
|
664 |
+
|
665 |
+
self.crossattention = MplugOwlVisualAbstractorAttention(config)
|
666 |
+
self.has_cross_attention = True
|
667 |
+
|
668 |
+
def forward(
|
669 |
+
self,
|
670 |
+
hidden_states,
|
671 |
+
attention_mask=None,
|
672 |
+
head_mask=None,
|
673 |
+
encoder_hidden_states=None,
|
674 |
+
encoder_attention_mask=None,
|
675 |
+
output_attentions=False,
|
676 |
+
):
|
677 |
+
if encoder_hidden_states is None:
|
678 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
679 |
+
cross_attention_outputs = self.crossattention(
|
680 |
+
hidden_states,
|
681 |
+
attention_mask,
|
682 |
+
head_mask,
|
683 |
+
encoder_hidden_states,
|
684 |
+
encoder_attention_mask,
|
685 |
+
output_attentions=output_attentions,
|
686 |
+
)
|
687 |
+
query_attention_output = cross_attention_outputs[0]
|
688 |
+
|
689 |
+
outputs = (query_attention_output,)
|
690 |
+
return outputs
|
691 |
+
|
692 |
+
|
693 |
+
class MplugOwlVisualAbstractorEncoder(nn.Module):
|
694 |
+
def __init__(self, config):
|
695 |
+
super().__init__()
|
696 |
+
self.config = config
|
697 |
+
self.layers = nn.ModuleList(
|
698 |
+
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
699 |
+
)
|
700 |
+
self.gradient_checkpointing = True
|
701 |
+
|
702 |
+
def forward(
|
703 |
+
self,
|
704 |
+
hidden_states,
|
705 |
+
attention_mask=None,
|
706 |
+
head_mask=None,
|
707 |
+
encoder_hidden_states=None,
|
708 |
+
encoder_attention_mask=None,
|
709 |
+
past_key_values=None,
|
710 |
+
output_attentions=False,
|
711 |
+
output_hidden_states=False,
|
712 |
+
return_dict=True,
|
713 |
+
):
|
714 |
+
all_hidden_states = () if output_hidden_states else None
|
715 |
+
|
716 |
+
for i in range(self.config.num_hidden_layers):
|
717 |
+
layer_module = self.layers[i]
|
718 |
+
if output_hidden_states:
|
719 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
720 |
+
|
721 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
722 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
723 |
+
|
724 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
725 |
+
|
726 |
+
def create_custom_forward(module):
|
727 |
+
def custom_forward(*inputs):
|
728 |
+
return module(*inputs, past_key_value, output_attentions)
|
729 |
+
|
730 |
+
return custom_forward
|
731 |
+
|
732 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
733 |
+
create_custom_forward(layer_module),
|
734 |
+
hidden_states,
|
735 |
+
attention_mask,
|
736 |
+
layer_head_mask,
|
737 |
+
encoder_hidden_states,
|
738 |
+
encoder_attention_mask,
|
739 |
+
)
|
740 |
+
else:
|
741 |
+
layer_outputs = layer_module(
|
742 |
+
hidden_states,
|
743 |
+
attention_mask,
|
744 |
+
layer_head_mask,
|
745 |
+
encoder_hidden_states,
|
746 |
+
encoder_attention_mask,
|
747 |
+
output_attentions,
|
748 |
+
)
|
749 |
+
|
750 |
+
hidden_states = layer_outputs[0]
|
751 |
+
|
752 |
+
return BaseModelOutput(
|
753 |
+
last_hidden_state=hidden_states,
|
754 |
+
)
|
755 |
+
|
756 |
+
|
757 |
+
class MplugOwlVisualAbstractorModel(PreTrainedModel):
|
758 |
+
_no_split_modules = ["MplugOwlVisualAbstractorLayer"]
|
759 |
+
def __init__(self, config, language_hidden_size):
|
760 |
+
super().__init__(config)
|
761 |
+
self.config = config
|
762 |
+
|
763 |
+
self.encoder = MplugOwlVisualAbstractorEncoder(config)
|
764 |
+
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size)
|
765 |
+
self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size))
|
766 |
+
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
767 |
+
|
768 |
+
self.post_init()
|
769 |
+
|
770 |
+
def _prune_heads(self, heads_to_prune):
|
771 |
+
"""
|
772 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
773 |
+
class PreTrainedModel
|
774 |
+
"""
|
775 |
+
for layer, heads in heads_to_prune.items():
|
776 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
777 |
+
|
778 |
+
def get_extended_attention_mask(
|
779 |
+
self,
|
780 |
+
attention_mask: torch.Tensor,
|
781 |
+
input_shape: Tuple[int],
|
782 |
+
device: torch.device,
|
783 |
+
) -> torch.Tensor:
|
784 |
+
"""
|
785 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
786 |
+
|
787 |
+
Arguments:
|
788 |
+
attention_mask (`torch.Tensor`):
|
789 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
790 |
+
input_shape (`Tuple[int]`):
|
791 |
+
The shape of the input to the model.
|
792 |
+
device: (`torch.device`):
|
793 |
+
The device of the input to the model.
|
794 |
+
|
795 |
+
Returns:
|
796 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
797 |
+
"""
|
798 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
799 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
800 |
+
if attention_mask.dim() == 3:
|
801 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
802 |
+
elif attention_mask.dim() == 2:
|
803 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
804 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
805 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
806 |
+
else:
|
807 |
+
raise ValueError(
|
808 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
809 |
+
input_shape, attention_mask.shape
|
810 |
+
)
|
811 |
+
)
|
812 |
+
|
813 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
814 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
815 |
+
# positions we want to attend and -10000.0 for masked positions.
|
816 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
817 |
+
# effectively the same as removing these entirely.
|
818 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
819 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
820 |
+
return extended_attention_mask
|
821 |
+
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
attention_mask=None,
|
825 |
+
head_mask=None,
|
826 |
+
encoder_hidden_states=None,
|
827 |
+
encoder_attention_mask=None,
|
828 |
+
past_key_values=None,
|
829 |
+
output_attentions=None,
|
830 |
+
output_hidden_states=None,
|
831 |
+
return_dict=None,
|
832 |
+
):
|
833 |
+
r"""
|
834 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
835 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
836 |
+
the model is configured as a decoder.
|
837 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
838 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
839 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
840 |
+
- 1 for tokens that are **not masked**,
|
841 |
+
- 0 for tokens that are **masked**.
|
842 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
|
843 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
|
844 |
+
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
|
845 |
+
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
|
846 |
+
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
847 |
+
`(batch_size, sequence_length)`.
|
848 |
+
"""
|
849 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
850 |
+
output_hidden_states = (
|
851 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
852 |
+
)
|
853 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
854 |
+
|
855 |
+
query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1)
|
856 |
+
embedding_output = query_embeds
|
857 |
+
input_shape = embedding_output.size()[:-1]
|
858 |
+
batch_size, seq_length = input_shape
|
859 |
+
device = embedding_output.device
|
860 |
+
|
861 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
862 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
863 |
+
if attention_mask is None:
|
864 |
+
attention_mask = torch.ones(
|
865 |
+
(query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device
|
866 |
+
)
|
867 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
868 |
+
|
869 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
870 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
871 |
+
if encoder_hidden_states is not None:
|
872 |
+
if type(encoder_hidden_states) == list:
|
873 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
874 |
+
else:
|
875 |
+
(
|
876 |
+
encoder_batch_size,
|
877 |
+
encoder_sequence_length,
|
878 |
+
_,
|
879 |
+
) = encoder_hidden_states.size()
|
880 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
881 |
+
|
882 |
+
if type(encoder_attention_mask) == list:
|
883 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
884 |
+
elif encoder_attention_mask is None:
|
885 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
886 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
887 |
+
else:
|
888 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
889 |
+
else:
|
890 |
+
encoder_extended_attention_mask = None
|
891 |
+
|
892 |
+
# Prepare head mask if needed
|
893 |
+
# 1.0 in head_mask indicate we keep the head
|
894 |
+
# attention_probs has shape bsz x n_heads x N x N
|
895 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
896 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
897 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
898 |
+
|
899 |
+
encoder_outputs = self.encoder(
|
900 |
+
embedding_output,
|
901 |
+
attention_mask=extended_attention_mask,
|
902 |
+
head_mask=head_mask,
|
903 |
+
encoder_hidden_states=encoder_hidden_states,
|
904 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
905 |
+
past_key_values=past_key_values,
|
906 |
+
output_attentions=output_attentions,
|
907 |
+
output_hidden_states=output_hidden_states,
|
908 |
+
return_dict=return_dict,
|
909 |
+
)
|
910 |
+
sequence_output = encoder_outputs[0]
|
911 |
+
pooled_output = sequence_output[:, 0, :]
|
912 |
+
|
913 |
+
sequence_output = self.visual_fc(sequence_output)
|
914 |
+
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1)
|
915 |
+
|
916 |
+
return BaseModelOutputWithPooling(
|
917 |
+
last_hidden_state=sequence_output,
|
918 |
+
pooler_output=pooled_output,
|
919 |
+
hidden_states=encoder_outputs.hidden_states,
|
920 |
+
)
|
921 |
+
|
922 |
+
|