--- license: mit language: - en base_model: - MAGAer13/mplug-owl2-llama2-7b --- # DeQA-Score-Mix3 DeQA-Score ( [project page](https://depictqa.github.io/deqa-score/) / [codes](https://github.com/zhiyuanyou/DeQA-Score) / [paper](https://arxiv.org/abs/2501.11561) ) model weights fully fine-tuned on KonIQ, SPAQ, and KADID datasets. This work is under our [DepictQA project](https://depictqa.github.io/). ## Quick Start with AutoModel For this image, ![](https://raw.githubusercontent.com/zhiyuanyou/DeQA-Score/main/fig/singapore_flyer.jpg) start an AutoModel scorer with `transformers==4.36.1`: ```python import requests import torch from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "zhiyuanyou/DeQA-Score-Mix3", trust_remote_code=True, attn_implementation="eager", torch_dtype=torch.float16, device_map="auto", ) from PIL import Image # The inputs should be a list of multiple PIL images score = model.score( [Image.open(requests.get( "https://raw.githubusercontent.com/zhiyuanyou/DeQA-Score/main/fig/singapore_flyer.jpg", stream=True ).raw)] ) ``` The "score" result should be 1.9404 (in range [1,5], higher is better). ## Non-reference IQA Results (PLCC / SRCC) | Dataset | KonIQ | SPAQ | KADID | PIPAL | LIVE-Wild | AGIQA | TID2013 | CSIQ | |--------------|-----------|----------|----------|----------|-----------|----------|----------|----------| | Q-Align (Baseline) | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 | | DeQA-Score (Ours) | **0.956 / 0.943** | **0.938 / 0.934** | **0.955 / 0.953** | **0.495 / 0.496** | **0.900 / 0.887** | **0.808 / 0.745** | **0.852 / 0.820** | **0.900 / 0.857** | If you find our work useful for your research and applications, please cite using the BibTeX: ```bibtex @article{deqa_score, title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution}, author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao}, journal={arXiv preprint arXiv:2501.11561}, year={2025}, } ```