zhuzhu2dandan commited on
Commit
d7bf0c3
·
verified ·
1 Parent(s): ba8fb87

Upload 2 files

Browse files
Files changed (2) hide show
  1. gitlab_push_file.ipynb +72 -0
  2. shou_xin.safetensors +3 -0
gitlab_push_file.ipynb ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from ...modules import sparse as sp
6
+ from .base import SparseTransformerBase
7
+
8
+
9
+ class SLatEncoder(SparseTransformerBase):
10
+ def __init__(
11
+ self,
12
+ resolution: int,
13
+ in_channels: int,
14
+ model_channels: int,
15
+ latent_channels: int,
16
+ num_blocks: int,
17
+ num_heads: Optional[int] = None,
18
+ num_head_channels: Optional[int] = 64,
19
+ mlp_ratio: float = 4,
20
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
21
+ window_size: int = 8,
22
+ pe_mode: Literal["ape", "rope"] = "ape",
23
+ use_fp16: bool = False,
24
+ use_checkpoint: bool = False,
25
+ qk_rms_norm: bool = False,
26
+ ):
27
+ super().__init__(
28
+ in_channels=in_channels,
29
+ model_channels=model_channels,
30
+ num_blocks=num_blocks,
31
+ num_heads=num_heads,
32
+ num_head_channels=num_head_channels,
33
+ mlp_ratio=mlp_ratio,
34
+ attn_mode=attn_mode,
35
+ window_size=window_size,
36
+ pe_mode=pe_mode,
37
+ use_fp16=use_fp16,
38
+ use_checkpoint=use_checkpoint,
39
+ qk_rms_norm=qk_rms_norm,
40
+ )
41
+ self.resolution = resolution
42
+ self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
43
+
44
+ self.initialize_weights()
45
+ if use_fp16:
46
+ self.convert_to_fp16()
47
+
48
+ def initialize_weights(self) -> None:
49
+ super().initialize_weights()
50
+ # Zero-out output layers:
51
+ nn.init.constant_(self.out_layer.weight, 0)
52
+ nn.init.constant_(self.out_layer.bias, 0)
53
+
54
+ def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
55
+ h = super().forward(x)
56
+ h = h.type(x.dtype)
57
+ h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
58
+ h = self.out_layer(h)
59
+
60
+ # Sample from the posterior distribution
61
+ mean, logvar = h.feats.chunk(2, dim=-1)
62
+ if sample_posterior:
63
+ std = torch.exp(0.5 * logvar)
64
+ z = mean + std * torch.randn_like(std)
65
+ else:
66
+ z = mean
67
+ z = h.replace(z)
68
+
69
+ if return_raw:
70
+ return z, mean, logvar
71
+ else:
72
+ return z
shou_xin.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e59714179016388dee044952d92a733f5cdf462d815be67fe87259e88fdb4703
3
+ size 171969400