zijuncheng commited on
Commit
7c3f2ff
·
1 Parent(s): ecaa9d8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imdb
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: finetuning-sentiment-model-roberta
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: imdb
19
+ type: imdb
20
+ config: plain_text
21
+ split: test
22
+ args: plain_text
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.93
27
+ - name: F1
28
+ type: f1
29
+ value: 0.9297658862876254
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.9328859060402684
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.9266666666666666
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # finetuning-sentiment-model-roberta
42
+
43
+ This model was trained from scratch on the imdb dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.2171
46
+ - Accuracy: 0.93
47
+ - F1: 0.9298
48
+ - Precision: 0.9329
49
+ - Recall: 0.9267
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 4
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - gradient_accumulation_steps: 16
73
+ - total_train_batch_size: 64
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_steps: 500
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
82
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
83
+ | 0.144 | 0.98 | 46 | 0.2348 | 0.91 | 0.9132 | 0.8820 | 0.9467 |
84
+ | 0.0957 | 1.98 | 93 | 0.2171 | 0.93 | 0.9298 | 0.9329 | 0.9267 |
85
+ | 0.08 | 2.94 | 138 | 0.2554 | 0.9133 | 0.9167 | 0.8827 | 0.9533 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1
92
+ - Datasets 2.14.4
93
+ - Tokenizers 0.13.3