--- tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-model-roberta results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93 - name: F1 type: f1 value: 0.9297658862876254 - name: Precision type: precision value: 0.9328859060402684 - name: Recall type: recall value: 0.9266666666666666 --- # finetuning-sentiment-model-roberta This model was trained from scratch on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2171 - Accuracy: 0.93 - F1: 0.9298 - Precision: 0.9329 - Recall: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.144 | 0.98 | 46 | 0.2348 | 0.91 | 0.9132 | 0.8820 | 0.9467 | | 0.0957 | 1.98 | 93 | 0.2171 | 0.93 | 0.9298 | 0.9329 | 0.9267 | | 0.08 | 2.94 | 138 | 0.2554 | 0.9133 | 0.9167 | 0.8827 | 0.9533 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3