File size: 4,226 Bytes
b2cf739 9307c59 b2cf739 9307c59 b2cf739 9307c59 333d119 b2cf739 3d228c1 b2cf739 3d228c1 b2cf739 3d228c1 55588fa 3d228c1 4e29b01 3d228c1 4e29b01 3d228c1 4e29b01 bcd5b5a 3d228c1 607c999 3d228c1 e7f8e67 3d228c1 53c1b62 3d228c1 53c1b62 3d228c1 53c1b62 3d228c1 7f86ba9 3d228c1 bcd5b5a 3d228c1 9307c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: mit
pipeline_tag: text-generation
tags:
- ocean
- text-generation-inference
- oceangpt
language:
- en
datasets:
- zjunlp/OceanInstruct
---
<div align="center">
<img src="logo.jpg" width="300px">
**OceanGPT: A Large Language Model for Ocean Science Tasks**
<p align="center">
<a href="https://github.com/zjunlp/OceanGPT">Project</a> •
<a href="https://arxiv.org/abs/2310.02031">Paper</a> •
<a href="https://huggingface.co/collections/zjunlp/oceangpt-664cc106358fdd9f09aa5157">Models</a> •
<a href="http://oceangpt.zjukg.cn/">Web</a> •
<a href="#quickstart">Quickstart</a> •
<a href="#citation">Citation</a>
</p>
</div>
OceanGPT-7b-v0.1 is based on LLaMA2 and has been trained on an English dataset in the ocean domain.
## ⏩Quickstart
### Download the model
Download the model: [OceanGPT-7b-v0.1](https://huggingface.co/zjunlp/OceanGPT-7b-v0.1)
```shell
git lfs install
git clone https://huggingface.co/zjunlp/OceanGPT-7b-v0.1
```
or
```
huggingface-cli download --resume-download zjunlp/OceanGPT-7b-v0.1 --local-dir OceanGPT-7b-v0.1 --local-dir-use-symlinks False
```
### Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
path = 'YOUR-MODEL-PATH'
model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(path)
prompt = "Which is the largest ocean in the world?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## 📌Models
| Model Name | HuggingFace | WiseModel | ModelScope |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| OceanGPT-14B-v0.1 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-14B-v0.1" target="_blank">14B</a> |
| OceanGPT-7B-v0.2 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-7b-v0.2" target="_blank">7B</a> |
| OceanGPT-2B-v0.1 (based on MiniCPM) | <a href="https://huggingface.co/zjunlp/OceanGPT-2B-v0.1" target="_blank">2B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-2b-v0.1" target="_blank">2B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-2B-v0.1" target="_blank">2B</a> |
## 🌻Acknowledgement
OceanGPT is trained based on the open-sourced large language models including [Qwen](https://huggingface.co/Qwen), [MiniCPM](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f), [LLaMA](https://huggingface.co/meta-llama). Thanks for their great contributions!
### 🚩Citation
Please cite the following paper if you use OceanGPT in your work.
```bibtex
@article{bi2023oceangpt,
title={OceanGPT: A Large Language Model for Ocean Science Tasks},
author={Bi, Zhen and Zhang, Ningyu and Xue, Yida and Ou, Yixin and Ji, Daxiong and Zheng, Guozhou and Chen, Huajun},
journal={arXiv preprint arXiv:2310.02031},
year={2023}
}
``` |