File size: 2,575 Bytes
4bfd514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnext-base-384
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnext-base-384-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnext-base-384-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnext-base-384](https://huggingface.co/facebook/convnext-base-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1900
- Accuracy: 0.9510
- Precision: 0.9493
- Recall: 0.9488
- F1: 0.9482

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8521        | 1.0   | 80   | 0.6379          | 0.7838   | 0.8075    | 0.7774 | 0.7542 |
| 0.5214        | 2.0   | 160  | 0.3445          | 0.8909   | 0.8935    | 0.8833 | 0.8847 |
| 0.4013        | 3.0   | 240  | 0.2821          | 0.9119   | 0.9205    | 0.9048 | 0.9091 |
| 0.3152        | 4.0   | 320  | 0.2633          | 0.9249   | 0.9264    | 0.9234 | 0.9225 |
| 0.2552        | 5.0   | 400  | 0.2837          | 0.9229   | 0.9246    | 0.9179 | 0.9194 |
| 0.236         | 6.0   | 480  | 0.2367          | 0.9329   | 0.9311    | 0.9309 | 0.9301 |
| 0.2178        | 7.0   | 560  | 0.2161          | 0.9389   | 0.9384    | 0.9354 | 0.9360 |
| 0.1712        | 8.0   | 640  | 0.1985          | 0.9459   | 0.9461    | 0.9434 | 0.9439 |
| 0.1607        | 9.0   | 720  | 0.2024          | 0.9489   | 0.9463    | 0.9473 | 0.9454 |
| 0.1592        | 10.0  | 800  | 0.1900          | 0.9510   | 0.9493    | 0.9488 | 0.9482 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3