update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-xlsr-persian-50p
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-xlsr-persian-50p
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6846
|
18 |
+
- Wer: 0.4339
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 2
|
42 |
+
- total_train_batch_size: 16
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 30
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| No log | 1.05 | 250 | 3.2104 | 1.0 |
|
54 |
+
| 3.2437 | 2.11 | 500 | 2.9131 | 1.0 |
|
55 |
+
| 3.2437 | 3.16 | 750 | 1.0335 | 0.7303 |
|
56 |
+
| 1.4382 | 4.22 | 1000 | 0.8335 | 0.6155 |
|
57 |
+
| 1.4382 | 5.27 | 1250 | 0.7640 | 0.5904 |
|
58 |
+
| 0.6923 | 6.33 | 1500 | 0.6923 | 0.5468 |
|
59 |
+
| 0.6923 | 7.38 | 1750 | 0.6627 | 0.5238 |
|
60 |
+
| 0.5137 | 8.44 | 2000 | 0.6606 | 0.5112 |
|
61 |
+
| 0.5137 | 9.49 | 2250 | 0.6600 | 0.5125 |
|
62 |
+
| 0.4258 | 10.55 | 2500 | 0.6337 | 0.4939 |
|
63 |
+
| 0.4258 | 11.6 | 2750 | 0.6454 | 0.4851 |
|
64 |
+
| 0.362 | 12.66 | 3000 | 0.6481 | 0.4793 |
|
65 |
+
| 0.362 | 13.71 | 3250 | 0.6487 | 0.4801 |
|
66 |
+
| 0.3179 | 14.77 | 3500 | 0.6602 | 0.4668 |
|
67 |
+
| 0.3179 | 15.82 | 3750 | 0.6757 | 0.4683 |
|
68 |
+
| 0.2861 | 16.88 | 4000 | 0.6544 | 0.4591 |
|
69 |
+
| 0.2861 | 17.93 | 4250 | 0.6659 | 0.4634 |
|
70 |
+
| 0.2529 | 18.99 | 4500 | 0.6311 | 0.4556 |
|
71 |
+
| 0.2529 | 20.04 | 4750 | 0.6574 | 0.4525 |
|
72 |
+
| 0.235 | 21.1 | 5000 | 0.7019 | 0.4462 |
|
73 |
+
| 0.235 | 22.15 | 5250 | 0.6783 | 0.4426 |
|
74 |
+
| 0.2203 | 23.21 | 5500 | 0.6789 | 0.4361 |
|
75 |
+
| 0.2203 | 24.26 | 5750 | 0.6779 | 0.4336 |
|
76 |
+
| 0.2014 | 25.32 | 6000 | 0.6805 | 0.4406 |
|
77 |
+
| 0.2014 | 26.37 | 6250 | 0.6918 | 0.4407 |
|
78 |
+
| 0.1957 | 27.43 | 6500 | 0.6919 | 0.4360 |
|
79 |
+
| 0.1957 | 28.48 | 6750 | 0.6795 | 0.4332 |
|
80 |
+
| 0.1837 | 29.53 | 7000 | 0.6846 | 0.4339 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.11.3
|
86 |
+
- Pytorch 1.10.0+cu113
|
87 |
+
- Datasets 1.18.3
|
88 |
+
- Tokenizers 0.10.3
|