File size: 36,270 Bytes
2e57aaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
/*
Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
*/
#include <math.h>
#include <algorithm>
#include <chrono>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <memory>
#include <set>
#include <sstream>
#include <thread>
#include <tuple>
#include "utils/wave_reader/waveReadWrite.hpp"
#include "utils/ConfigReader.hpp"
#include <nvAudioEffects.h>
#include <map>
namespace {
const char kConfigEffectVariable[] = "effect";
const char kConfigSampleRateVariable[] = "sample_rate";
const char kConfigFileInputVariable[] = "input_wav_list";
const char kConfigFileInputFarendVariable[] = "input_farend_wav_list";
const char kConfigFileOutputVariable[] = "output_wav_list";
const char kConfigFileRTVariable[] = "real_time";
const char kConfigResetVariable[] = "reset";
const char kConfigFrameSize[] = "frame_size";
const char kConfigUseDefaultGpu[] = "use_default_gpu";
const char kConfigLogTarget[] = "log_target_list";
const char kConfigLogTargetFile[] = "log_target_file";
const char kConfigLogLevel[] = "log_level";
const char kConfigLogTargetFileDefault[] = "/tmp/nvAudioEffects_log.txt";
const char kConfigFileModelVariable[] = "model";
const char kConfigIntensityRatioVariable[] = "intensity_ratio";
const char kConfigVadEnable[] = "enable_vad";
const char kConfigChainedEffectGpuList[] = "chained_effect_gpu_list";
/* allowed sample rates */
const std::vector<uint32_t> kAllowedSampleRates = { 8000, 16000, 48000 };
} // namespace
struct StreamData {
// Wav file name(s) separated by ';'
std::string input_wav_file;
// Total number of samples in all input wav files together
unsigned num_samples = 0;
// Number of audio samples written to output file
unsigned already_written = 0;
// 32-bit float audio samples read from all input wav files
std::vector<float>* input_wav_samples;
// (AEC only) 32-bit float audio samples for farend input wav files
std::vector<float>* input_farend_wav_samples;
// Wav file name(s) to write the output data
std::string output_wav_file;
// Object for wav writing library
std::vector<std::unique_ptr<CWaveFileWrite>> wav_write;
// Index of each input file end in the audio data vector
std::vector<int> file_end_offsets;
// Index of current output file used as suffix to filename
int output_file_num;
};
class EffectsDemoApp {
public:
bool run(const ConfigReader& config_reader);
private:
// Validate configuration data.
bool validateConfig(const ConfigReader& config_reader);
// write to output wav
bool writeOutputWav(const std::vector<float*>& output_samples, size_t num_samples_per_channel,
int stream_index);
// sample rate config
uint32_t input_sample_rate_ = 0;
// output sample rate config
uint32_t output_sample_rate_ = 0;
// stream data
std::vector<StreamData> stream_data_;
// GPU selection flag - by default set to false
uint32_t use_default_gpu_ = 0;
// inited from configuration
bool real_time_ = false;
// intensity_ratio_ config, lies between 0 (no effect applied) to 1 (fully turned on)
float intensity_ratio_ = 1.0f;
// VAD support (denoiser/dereverb+denoiser only)
bool vad_supported_ = false;
unsigned int output_channels_ = 1;
};
bool EffectsDemoApp::validateConfig(const ConfigReader& config_reader) {
if (config_reader.IsConfigValueAvailable(kConfigEffectVariable) == false) {
std::cerr << "No " << kConfigEffectVariable << " variable found" << std::endl;
return false;
}
if (config_reader.IsConfigValueAvailable(kConfigFileModelVariable) == false) {
std::cerr << "No " << kConfigFileModelVariable << " variable found" << std::endl;
return false;
}
if (config_reader.IsConfigValueAvailable(kConfigFileInputVariable) == false) {
std::cerr << "No " << kConfigFileInputVariable << " variable found" << std::endl;
return false;
}
if (config_reader.IsConfigValueAvailable(kConfigFileOutputVariable) == false) {
std::cerr << "No " << kConfigFileOutputVariable << " variable found" << std::endl;
return false;
}
std::string real_time;
if (config_reader.GetConfigValue(kConfigFileRTVariable, &real_time) == false) {
std::cerr << "No " << kConfigFileRTVariable << " variable found" << std::endl;
return false;
}
if (real_time[0] != '0') {
real_time_ = true;
}
if (config_reader.IsConfigValueAvailable(kConfigResetVariable)) {
std::cout << "Reset available" << std::endl;
}
std::string use_default_gpu;
if (config_reader.IsConfigValueAvailable(kConfigUseDefaultGpu) &&
config_reader.GetConfigValue(kConfigUseDefaultGpu, &use_default_gpu)) {
use_default_gpu_ = std::strtoul(use_default_gpu.c_str(), nullptr, 0);
std::cout << "Use default GPU: " << use_default_gpu_ << std::endl;
}
std::string intensity_ratio;
float intensity_ratio_local;
if (config_reader.GetConfigValue(kConfigIntensityRatioVariable, &intensity_ratio)) {
intensity_ratio_local = std::strtof(intensity_ratio.c_str(), nullptr);
if (intensity_ratio_local < 0.0f || intensity_ratio_local > 1.0f) {
std::cerr << kConfigIntensityRatioVariable << " not supported" << std::endl;
return false;
}
} else {
intensity_ratio_local = 1.0f;
}
intensity_ratio_ = intensity_ratio_local;
std::cout << "intensity ratio is ::" << intensity_ratio_ << "!!" << std::endl;
return true;
}
bool EffectsDemoApp::writeOutputWav(const std::vector<float*>& output_samples,
size_t num_samples_per_channel, int stream_index) {
size_t to_write = num_samples_per_channel;
size_t max_allowed = stream_data_[stream_index].num_samples *
(output_sample_rate_/input_sample_rate_);
size_t already_written = stream_data_[stream_index].already_written;
size_t can_write = static_cast<size_t>(max_allowed - already_written);
if (can_write == 0) { return true; }
size_t will_write = std::min(to_write, can_write);
for (int i = 0; i < output_channels_; i++) {
if (!stream_data_[stream_index].wav_write[i]->writeChunk(output_samples[i],
will_write * sizeof(float))) {
std::cerr << "Could not write output to file "
<< stream_data_[stream_index].output_wav_file << std::endl;
return false;
}
}
stream_data_[stream_index].already_written += will_write;
return true;
}
void logger_cb(LoggingSeverity level, const char* log, void* userdata) {
std::cout << "LOG" << '(' << LogSeverityToString(level) << ") " << log << '\n';
}
inline LoggingSeverity StringToLogSeverity(std::string &severity) {
if ("ERROR" == severity) return LOG_LEVEL_ERROR;
if ("WARNING" == severity) return LOG_LEVEL_WARNING;
if ("INFO" == severity) return LOG_LEVEL_INFO;
return LOG_LEVEL_ERROR;
}
inline LoggingTarget StringToLogTarget(std::string &severity) {
if ("NONE" == severity) return LOG_TARGET_NONE;
if ("STDERR" == severity) return LOG_TARGET_STDERR;
if ("FILE" == severity) return LOG_TARGET_FILE;
if ("CALLBACK" == severity) return LOG_TARGET_CALLBACK;
return LOG_TARGET_NONE;
}
bool EffectsDemoApp::run(const ConfigReader& config_reader) {
if (validateConfig(config_reader) == false) {
return false;
}
auto input_wav_list = config_reader.GetConfigValueList(kConfigFileInputVariable);
auto output_wav_list = config_reader.GetConfigValueList(kConfigFileOutputVariable);
// Support 1024 max inputs to simplify
const int kMaxSupportedInputs = 1024;
if (input_wav_list.size() > kMaxSupportedInputs) {
std::cerr << "This sample application supports a maximum of " << kMaxSupportedInputs <<
" input files (although more may be supported by the SDK depending on GPU,"
" please refer to the programming guide for limits and procedure for"
" setting batch size in SDK)." << std::endl;
return false;
}
std::vector<std::string> log_targets;
if (config_reader.IsConfigValueAvailable(kConfigLogTarget)) {
log_targets = config_reader.GetConfigValueList(kConfigLogTarget);
}
LoggingSeverity severity = LOG_LEVEL_INFO;
int target = LOG_TARGET_STDERR;
std::string log_file(kConfigLogTargetFileDefault);
if (!log_targets.empty()) {
target = LOG_TARGET_NONE;
for (auto& item : log_targets) {
target |= StringToLogTarget(item);
}
}
if (target & LOG_TARGET_FILE) {
if (config_reader.IsConfigValueAvailable(kConfigLogTargetFile)) {
log_file = config_reader.GetConfigValue(kConfigLogTargetFile);
}
}
if (config_reader.IsConfigValueAvailable(kConfigLogLevel)) {
auto log_level = config_reader.GetConfigValue(kConfigLogLevel);
if (!log_level.empty()) {
severity = StringToLogSeverity(log_level);
}
}
if (input_wav_list.size() > output_wav_list.size()) {
std::cout << "Error: Input and output wav files list size mismatch found" << std::endl;
return false;
}
std::vector<bool> reset_list(input_wav_list.size(), false);
if (config_reader.IsConfigValueAvailable(kConfigResetVariable)) {
auto config_list = config_reader.GetConfigValueList(kConfigResetVariable);
for (auto& item : config_list) {
char* p;
unsigned int num = strtol(item.c_str(), &p, 10);
if (*p != 0) {
// Invalid?
continue;
}
if (num < 1 || num > input_wav_list.size()) {
std::cerr << "Error: Invalid stream specified for reset" <<std::endl;
return false;
}
reset_list[num-1] = true;
}
}
const unsigned num_streams = input_wav_list.size();
if (real_time_) {
std::cout << "App will run in real time mode ..." << std::endl;
}
NvAFX_Status log_status;
log_status = NvAFX_InitializeLogger(severity, target, log_file.c_str(),
target & LOG_TARGET_CALLBACK ? logger_cb : nullptr,
nullptr);
if (log_status != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_InitializeLogger() failed" << std::endl;
return false;
}
int num_effects;
NvAFX_EffectSelector* supported_effects;
if (NvAFX_GetEffectList(&num_effects, &supported_effects) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_GetEffectList() failed" << std::endl;
return false;
}
std::cout << "Total Effects supported: " << num_effects << std::endl;
for (int i = 0; i < num_effects; ++i) {
std::cout << "(" << i + 1 << ") " << supported_effects[i] << std::endl;
}
bool is_aec = false;
NvAFX_Handle handle;
std::vector<std::string> effects = config_reader.GetConfigValueList(kConfigEffectVariable);
std::vector<std::string> sample_rate_str = config_reader.GetConfigValueList(kConfigSampleRateVariable);
std::vector<uint32_t> sample_rates;
for (auto& s: sample_rate_str) {
sample_rates.push_back(std::strtoul(s.c_str(), nullptr, 0));
}
std::string effect_name;
if (effects.size() == 1) {
// Single effect
if (sample_rates.size() != effects.size()) {
std::cerr << "Expected single sample rate for single effect" << std::endl;
return false;
}
input_sample_rate_ = sample_rates[0];
if (std::find(kAllowedSampleRates.begin(), kAllowedSampleRates.end(), input_sample_rate_) ==
kAllowedSampleRates.end()) {
std::cerr << "Sample rate " << input_sample_rate_ << " not supported" << std::endl;
return false;
}
NvAFX_Status status = NVAFX_STATUS_FAILED;
if (effects[0] == "denoiser") {
status = NvAFX_CreateEffect(NVAFX_EFFECT_DENOISER, &handle);
} else if (effects[0] == "dereverb") {
status = NvAFX_CreateEffect(NVAFX_EFFECT_DEREVERB, &handle);
} else if (effects[0] == "dereverb_denoiser") {
status = NvAFX_CreateEffect(NVAFX_EFFECT_DEREVERB_DENOISER, &handle);
} else if (effects[0] == "aec") {
status = NvAFX_CreateEffect(NVAFX_EFFECT_AEC, &handle);
is_aec = true;
} else if (effects[0] == "superres") {
status = NvAFX_CreateEffect(NVAFX_EFFECT_SUPERRES, &handle);
} else {
std::cerr << "NvAFX_CreateEffect() failed. Invalid Effect Value : " << effects[0] << std::endl;
return false;
}
if (status == NVAFX_UNSUPPORTED_RUNTIME) {
float version = (CUDA_SUPPORTED_RUNTIME / 1000) + (CUDA_SUPPORTED_RUNTIME%100)/100.f;
std::cerr << "Unsupported CUDA runtime (requires >= " << version << "). "
"Please ensure that a driver supporting the required CUDA version is installed (or if using FCU, library path "
"contains the correct CUDA compat libraries). For more details, please refer to the "
"programming guide." << std::endl;
return false;
} else if (status != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_CreateEffect() failed" << std::endl;
return false;
}
effect_name = effects[0];
const std::set<std::string> kVadSupportedEffects = {"denoiser", "dereverb_denoiser"};
vad_supported_ = (kVadSupportedEffects.find(effects[0]) != kVadSupportedEffects.end()) &&
config_reader.IsConfigValueAvailable(kConfigVadEnable) &&
std::strtoul(config_reader.GetConfigValue(kConfigVadEnable).c_str(), nullptr, 0);
if (vad_supported_) {
std::cout << "Enabling VAD" << std::endl;
if (NvAFX_SetU32(handle, NVAFX_PARAM_ENABLE_VAD, 1) != NVAFX_STATUS_SUCCESS) {
std::cerr << "Could not enable VAD" << std::endl;
return false;
}
}
// If the system has multiple supported GPUs, then the application can either
// use CUDA driver APIs or CUDA runtime APIs to enumerate the GPUs and select one based on the
// application's requirements or offload the responsibility to SDK to select the GPU by setting
// NVAFX_PARAM_USE_DEFAULT_GPU as 1
if (NvAFX_SetU32(handle, NVAFX_PARAM_USE_DEFAULT_GPU, use_default_gpu_) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_SetBool(NVAFX_PARAM_USE_DEFAULT_GPU " << ") failed" << std::endl;
}
status = NvAFX_SetU32(handle, NVAFX_PARAM_INPUT_SAMPLE_RATE, input_sample_rate_);
if (status == NVAFX_STATUS_INVALID_PARAM) {
// Try depreciated param
status = NvAFX_SetU32(handle, NVAFX_PARAM_SAMPLE_RATE, input_sample_rate_);
}
if (status!= NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_SetU32(Sample Rate: " << input_sample_rate_ << ") failed" << std::endl;
return false;
}
} else {
const std::map<std::tuple<std::string, std::string, uint32_t, uint32_t>, NvAFX_EffectSelector> supported_configs =
{
// 16k Effect + Superres 16k-48k
{std::make_tuple(std::string("denoiser"), std::string("superres"), 16000, 16000), NVAFX_CHAINED_EFFECT_DENOISER_16k_SUPERRES_16k_TO_48k},
{std::make_tuple(std::string("dereverb"), std::string("superres"), 16000, 16000), NVAFX_CHAINED_EFFECT_DEREVERB_16k_SUPERRES_16k_TO_48k},
{std::make_tuple(std::string("dereverb_denoiser"), std::string("superres"), 16000, 16000),
NVAFX_CHAINED_EFFECT_DEREVERB_DENOISER_16k_SUPERRES_16k_TO_48k},
// Superres 8k-16k + 16k Effect
{std::make_tuple("superres", "denoiser", 8000, 16000), NVAFX_CHAINED_EFFECT_SUPERRES_8k_TO_16k_DENOISER_16k },
{std::make_tuple("superres", "dereverb", 8000, 16000), NVAFX_CHAINED_EFFECT_SUPERRES_8k_TO_16k_DEREVERB_16k },
{std::make_tuple("superres", "dereverb_denoiser", 8000, 16000),
NVAFX_CHAINED_EFFECT_SUPERRES_8k_TO_16k_DEREVERB_DENOISER_16k },
};
auto effect_config = supported_configs.find(std::make_tuple(effects[0], effects[1], sample_rates[0], sample_rates[1]));
if (effect_config == supported_configs.end()) {
std::cerr << "Unsupported effect chain" <<std::endl;
return false;
}
auto status = NvAFX_CreateChainedEffect(effect_config->second,&handle);
if (status == NVAFX_UNSUPPORTED_RUNTIME) {
float version = (CUDA_SUPPORTED_RUNTIME / 1000) + (CUDA_SUPPORTED_RUNTIME%100)/100.f;
std::cerr << "Unsupported CUDA runtime (requires >= " << version << "). "
"Please ensure that a driver supporting the required CUDA version is installed (or if using FCU, library path "
"contains the correct CUDA compat libraries). For more details, please refer to the "
"programming guide." << std::endl;
return false;
} else if (status != NVAFX_STATUS_SUCCESS) {
std::cerr << "Could not create effect" << std::endl;
return false;
}
input_sample_rate_ = sample_rates[0];
effect_name = "Chained Effect (" + effects[0] + " + " + effects[1] + ")";
if (config_reader.IsConfigValueAvailable(kConfigChainedEffectGpuList)) {
std::vector<std::string> gpu_list = config_reader.GetConfigValueList(kConfigChainedEffectGpuList);
std::vector<uint32_t> gpus;
for (auto& s: gpu_list) {
gpus.push_back(std::strtoul(s.c_str(), nullptr, 0));
}
NvAFX_SetU32List(handle, NVAFX_PARAM_CHAINED_EFFECT_GPU_LIST, gpus.data(), gpus.size());
}
}
unsigned num_input_samples_per_frame = 0;
//Superres has more number of output samples
// Note: Number of samples are per channel
unsigned num_output_samples_per_frame = 0;
if (config_reader.IsConfigValueAvailable(kConfigFrameSize)) {
auto config_value = config_reader.GetConfigValue(kConfigFrameSize);
unsigned frame_size = std::strtoul(config_value.c_str(), nullptr, 0);
// frame_size is in milliseconds.
num_input_samples_per_frame = (input_sample_rate_ * frame_size) / 1000;
}
// Obtain farend audio if effect is AEC
std::vector<std::string> input_farend_wav_list;
if (is_aec) {
input_farend_wav_list = config_reader.GetConfigValueList(kConfigFileInputFarendVariable);
if (input_farend_wav_list.size() != input_wav_list.size()) {
std::cerr << "AEC effect requires farend audio as input in addition to nearend audio."
"Please ensure that the config value \"" << kConfigFileInputFarendVariable <<
"\" is present and has correct number of files" << std::endl;
return false;
}
}
NvAFX_Status status;
std::vector<std::string> model_files = config_reader.GetConfigValueList(kConfigFileModelVariable);
// Note: For single effect, model can be passed in as a single string or as a list of strings with size 1
std::unique_ptr<char*[]> model_files_param(new char*[model_files.size()]);
for (int i = 0; i < model_files.size(); i++) {
model_files_param[i] = (char*) model_files[i].data();
}
if (NvAFX_SetStringList(handle, NVAFX_PARAM_MODEL_PATH, (const char**)model_files_param.get(),
model_files.size())
!= NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_SetString() failed" << std::endl;
return false;
}
if (NvAFX_SetU32(handle, NVAFX_PARAM_NUM_STREAMS, num_streams) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_SetU32(NVAFX_PARAM_NUM_STREAMS) failed" << std::endl;
return false;
}
unsigned int list_size = 0;
std::unique_ptr<unsigned int[]> supported_list = nullptr;
auto ret = NvAFX_GetU32List(handle, NVAFX_PARAM_SUPPORTED_NUM_SAMPLES_PER_FRAME,
supported_list.get(), &list_size);
if (ret != NVAFX_STATUS_OUTPUT_BUFFER_TOO_SMALL) {
std::cerr << "NvAFX_GetU32List(NVAFX_PARAM_SUPPORTED_NUM_SAMPLES_PER_FRAME) failed."
<< std::endl;
return false;
}
supported_list.reset(new unsigned int[list_size]);
if (NvAFX_GetU32List(handle, NVAFX_PARAM_SUPPORTED_NUM_SAMPLES_PER_FRAME,
supported_list.get(), &list_size) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_GetU32List(NVAFX_PARAM_SUPPORTED_NUM_SAMPLES_PER_FRAME) failed."
<< std::endl;
return false;
}
// If config specifies certain value check if it is in supported list
if (config_reader.IsConfigValueAvailable(kConfigFrameSize)) {
auto pointer = std::find(supported_list.get(), supported_list.get() + list_size,
num_input_samples_per_frame);
if (pointer == supported_list.get() + list_size) {
std::ostringstream oss;
std::string separator("");
oss << "'";
for (unsigned i = 0; i < list_size; ++i) {
oss << separator << (supported_list[i] * 1000) / input_sample_rate_;
separator = ", ";
}
oss << "'.";
std::cerr << "Supplied value for " << kConfigFrameSize << " is not supported. Supplied value: "
<< config_reader.GetConfigValue(kConfigFrameSize) << "." << " Supported values: "
<< oss.str() << std::endl;
return false;
}
} else {
num_input_samples_per_frame = supported_list[0];
}
status = NvAFX_SetU32(handle, NVAFX_PARAM_NUM_SAMPLES_PER_INPUT_FRAME, num_input_samples_per_frame);
if (status == NVAFX_STATUS_INVALID_PARAM) {
// Try previous version
status = NvAFX_SetU32(handle, NVAFX_PARAM_NUM_SAMPLES_PER_FRAME, num_input_samples_per_frame);
}
if (status!= NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_SetU32(NVAFX_PARAM_NUM_SAMPLES_PER_FRAME) failed" << std::endl;
return false;
}
// Intensity ratio may not be supported for some effects, ignore if status is invalid param
status = NvAFX_SetFloat(handle, NVAFX_PARAM_INTENSITY_RATIO, intensity_ratio_);
if (status != NVAFX_STATUS_SUCCESS && status != NVAFX_STATUS_INVALID_PARAM) {
std::cerr << "NvAFX_SetFloat(NVAFX_PARAM_INTENSITY_RATIO) failed" << std::endl;
}
std::cout << "Loading effect" << " ... ";
if (NvAFX_Load(handle) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_Load() failed" << std::endl;
return false;
}
std::cout << "Done" << std::endl;
// Try to get output number of samples per frame (valid only with new SDK)
status = NvAFX_GetU32(handle, NVAFX_PARAM_NUM_SAMPLES_PER_OUTPUT_FRAME,
&num_output_samples_per_frame);
if (status != NVAFX_STATUS_SUCCESS) {
if (status == NVAFX_STATUS_INVALID_PARAM) {
// Old SDK, output samples = input samples
num_output_samples_per_frame = num_input_samples_per_frame;
} else {
std::cerr << "NvAFX_GetU32() failed: NVAFX_PARAM_NUM_SAMPLES_PER_OUTPUT_FRAME" << std::endl;
return false;
}
}
// Try to get output sample rate (valid only with new SDK)
status = NvAFX_GetU32(handle, NVAFX_PARAM_OUTPUT_SAMPLE_RATE, &output_sample_rate_);
if (status != NVAFX_STATUS_SUCCESS) {
if (status == NVAFX_STATUS_INVALID_PARAM) {
// Old SDK, output sample rate = input sample rate
output_sample_rate_ = input_sample_rate_;
} else {
std::cerr << "NvAFX_GetU32() failed: NVAFX_PARAM_OUTPUT_SAMPLE_RATE" << std::endl;
return false;
}
}
// Try to get input/output channels, if that fails (old SDK?), try depreciated num_channels
unsigned num_input_channels, num_output_channels;
status = NvAFX_GetU32(handle, NVAFX_PARAM_NUM_INPUT_CHANNELS, &num_input_channels);
if (status != NVAFX_STATUS_SUCCESS) {
if (status == NVAFX_STATUS_INVALID_PARAM) {
if (NvAFX_GetU32(handle, NVAFX_PARAM_NUM_CHANNELS, &num_input_channels) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_GetU32(NVAFX_PARAM_NUM_CHANNELS) failed" << std::endl;
return false;
} else {
num_output_channels = num_input_channels;
}
} else {
std::cerr << "NvAFX_GetU32() failed" << std::endl;
return false;
}
} else if (NvAFX_GetU32(handle, NVAFX_PARAM_NUM_OUTPUT_CHANNELS, &num_output_channels) !=
NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_GetU32(NVAFX_PARAM_NUM_OUTPUT_CHANNELS) failed" << std::endl;
return false;
}
output_channels_ = num_output_channels;
std::cout << "Effect properties:" << std::endl
<< " Effect : " << effect_name << std::endl
<< " Input Channels : " << num_input_channels << std::endl
<< " Input Sample Rate : " << input_sample_rate_ << std::endl
<< " Output Sample Rate : " << output_sample_rate_ << std::endl
<< " Samples per frame : " << num_input_samples_per_frame << std::endl
<< " Number of streams : " << num_streams << std::endl;
size_t max_num_input_samples = 0;
// read the noisy input wav file data and cache it in RAM.
for (unsigned i = 0; i < num_streams; ++i) {
StreamData data;
data.input_wav_file = input_wav_list[i];
if (!ReadWavFile(input_wav_list[i], input_sample_rate_, &data.input_wav_samples,
&data.num_samples, &data.file_end_offsets, num_input_samples_per_frame)) {
std::cerr << "Unable to read wav file: " << input_wav_list[i] << std::endl;
if (errno == EMFILE) {
std::cerr << "Open file limit reached. Please increase file limit using the ulimit "
"utility (for example, \"ulimit -n 20000\"). Please refer to the "
"documentation of the ulimit utility for more details." << std::endl;
}
return false;
}
// max_num_samples should be aligned to 'num_input_samples_per_frame' automatically
if (max_num_input_samples < data.input_wav_samples->size()) {
max_num_input_samples = data.input_wav_samples->size();
}
if (is_aec) {
unsigned int num_samples = 0;
std::vector<int> end_offsets;
if (!ReadWavFile(input_farend_wav_list[i], input_sample_rate_, &data.input_farend_wav_samples,
&num_samples, &end_offsets, num_input_samples_per_frame)) {
std::cerr << "Unable to read wav file: " << input_farend_wav_list[i] << std::endl;
if (errno == EMFILE) {
std::cerr << "Open file limit reached. Please increase file limit using the ulimit "
"utility (for example, \"ulimit -n 20000\"). Please refer to the "
"documentation of the ulimit utility for more details." << std::endl;
}
return false;
}
if (num_samples != data.num_samples || end_offsets != data.file_end_offsets) {
std::cerr << "Input farend file specification does not match nearend file specification."
"Farend and Nearend files must have the same number of samples";
return false;
}
}
data.output_wav_file = output_wav_list[i];
if (output_channels_ > 1) {
auto filename_wo_ext = output_wav_list[i].substr(0, output_wav_list[i].find_last_of("."));
for (int ch = 0; ch < output_channels_; ch++) {
std::string filename = filename_wo_ext + "_ch" + std::to_string(ch + 1) + ".wav";
data.wav_write.emplace_back(
std::unique_ptr<CWaveFileWrite>(new CWaveFileWrite(filename,
output_sample_rate_,
1, 32, true)));
}
} else {
data.wav_write.emplace_back(std::unique_ptr<CWaveFileWrite>(new CWaveFileWrite(output_wav_list[i], output_sample_rate_,
1, 32, true)));
}
for (int ch = 0; ch < num_output_channels; ch++) {
if (!data.wav_write[ch]->initFile()) {
std::cerr << "Unable to open file for writing: "
<< data.wav_write[ch]->getFileName() << std::endl;
if (errno == EMFILE) {
std::cerr << "Open file limit reached. Please increase file limit using the ulimit "
"utility (for example, \"ulimit -n 20000\"). Please refer to the "
"documentation of the ulimit utility for more details." << std::endl;
}
return false;
}
}
data.output_file_num = 0;
stream_data_.push_back(std::move(data));
#ifndef ENABLE_PERF_DUMP
std::cout << "Input wav file: " << input_wav_list[i] << std::endl
<< "Total " << data.num_samples << " samples read" << std::endl;
#endif // ENABLE_PERF_DUMP
}
// make all sizes same to ease effect run loop's work
for (auto& data : stream_data_) {
data.input_wav_samples->resize(max_num_input_samples);
}
float frame_in_secs = static_cast<float>(num_input_samples_per_frame) /
static_cast<float>(input_sample_rate_);
float total_run_time = 0.f;
float total_audio_duration = 0.f;
float checkpoint = 0.1f;
float expected_audio_duration = static_cast<float>(max_num_input_samples) /
static_cast<float>(input_sample_rate_);
std::vector<float> input_frame(num_input_channels * num_input_samples_per_frame * num_streams);
std::vector<float> output_frame(num_output_channels * num_output_samples_per_frame * num_streams);
std::string progress_bar = "[ ] ";
std::cout << "Processed: " << progress_bar << "0%\r";
std::cout.flush();
std::vector<NvAFX_Bool> bitmap(input_wav_list.size(), NVAFX_FALSE);
// wav data is already padded to align to num_input_samples_per_frame by ReadWavFile()
for (size_t offset = 0; offset < max_num_input_samples; offset += num_input_samples_per_frame) {
// prepare input data
bool should_reset = false;
for (unsigned i = 0; i < num_streams; ++i) {
float *in = stream_data_[i].input_wav_samples->data() + offset;
std::copy(in, in + num_input_samples_per_frame, &input_frame[i * num_input_samples_per_frame]);
if (is_aec) {
in = stream_data_[i].input_farend_wav_samples->data() + offset;
std::copy(in, in + num_input_samples_per_frame, &input_frame[(num_streams + i) * num_input_samples_per_frame]);
}
// Check if this file finished, if so, start a new file
if (stream_data_[i].file_end_offsets.size() &&
offset == static_cast<unsigned>(stream_data_[i].file_end_offsets[0])) {
stream_data_[i].file_end_offsets.erase(stream_data_[i].file_end_offsets.begin());
if (stream_data_[i].file_end_offsets.size()) {
// Open a new file only if this isn't the last one
if (output_channels_ > 1) {
uint32_t output_num = ++stream_data_[i].output_file_num;
auto filename_wo_ext = output_wav_list[i].substr(0, output_wav_list[i].find_last_of("_"));
for (int ch = 0; ch < output_channels_; ch++) {
stream_data_[i].wav_write[ch]->commitFile();
std::string filename = filename_wo_ext + + "_" + std::to_string(output_num) +
"_ch" + std::to_string(ch + 1) + ".wav";
stream_data_[i].wav_write[ch] = std::unique_ptr<CWaveFileWrite>(new CWaveFileWrite(filename, output_sample_rate_,
1, 32, true));
if (!stream_data_[i].wav_write[ch]->initFile()) {
std::cerr << "Unable to open file for writing: " << filename;
return false;
}
}
} else {
auto ext = output_wav_list[i].find_last_of(".");
std::string filename = output_wav_list[i].substr(0, ext) + "_" +
std::to_string(++stream_data_[i].output_file_num) + ".wav";
stream_data_[i].wav_write[0] = std::unique_ptr<CWaveFileWrite>(new CWaveFileWrite(filename, output_sample_rate_,
1, 32, true));
if (!stream_data_[i].wav_write[0]->initFile()) {
std::cerr << "Unable to open file for writing: " << filename;
return false;
}
}
if (reset_list[i]) {
should_reset = true;
bitmap[i] = NVAFX_TRUE;
}
}
}
}
if (should_reset) {
if (NvAFX_Reset(handle, bitmap.data(), input_wav_list.size()) != NVAFX_STATUS_SUCCESS) {
std::cerr << "Reset failed" << std::endl;
return false;
}
memset(bitmap.data(), NVAFX_FALSE, sizeof(NvAFX_Bool) * bitmap.size());
}
const float* input[2];
float* output[2];
input[0] = input_frame.data();
if (is_aec) {
input[1] = &input_frame[input_frame.size() / num_input_channels];
}
output[0] = output_frame.data();
if (num_output_channels > 1) {
output[1] = output_frame.data() + output_frame.size()/2;
}
auto start_tick = std::chrono::high_resolution_clock::now();
if (NvAFX_Run(handle, input, output, num_input_samples_per_frame, num_input_channels) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_Run() failed" << std::endl;
return false;
}
auto run_end_tick = std::chrono::high_resolution_clock::now();
total_run_time += (std::chrono::duration<float>(run_end_tick - start_tick)).count();
total_audio_duration += frame_in_secs;
if ((total_audio_duration / expected_audio_duration) > checkpoint) {
progress_bar[checkpoint * 10] = '=';
std::cout << "Processed: " << progress_bar << checkpoint * 100.f << "% ";
std::cout << (checkpoint >=1 ? "\n" : "\r");
std::cout.flush();
checkpoint += 0.1f;
}
for (unsigned i = 0; i < num_streams; ++i) {
unsigned idx = i * num_output_samples_per_frame;
std::vector<float*> outputs = {};
unsigned size_per_channel = output_frame.size()/output_channels_;
for (int ch = 0; ch < output_channels_; ch++) {
outputs.push_back(&output_frame[idx + ch * size_per_channel]);
}
if (!writeOutputWav(outputs, num_output_samples_per_frame, i)) {
return false;
}
}
if (real_time_) {
auto end_tick = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> elapsed = end_tick - start_tick;
float sleep_time_secs = frame_in_secs - elapsed.count();
std::this_thread::sleep_for(std::chrono::milliseconds(static_cast<int>(sleep_time_secs * 1000)));
}
}
std::cout << "Processing time " << std::setprecision(2) << total_run_time << " secs for "
<< total_audio_duration << std::setprecision(2) << " secs audio file (" << total_run_time / total_audio_duration
<< " secs processing time per sec of audio)" << std::endl;
if (real_time_) {
std::cout << "Note: App ran in real time mode i.e. simulated the input data rate of a mic" << std::endl
<< "'Processing time' could be less then actual run time" << std::endl;
}
for (auto& data : stream_data_) {
for (int ch = 0; ch < output_channels_; ch++) {
data.wav_write[ch]->commitFile();
}
}
std::cout << "Output wav files written. " << std::endl;
if (NvAFX_DestroyEffect(handle) != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_Release() failed" << std::endl;
return false;
}
if (NvAFX_UninitializeLogger() != NVAFX_STATUS_SUCCESS) {
std::cerr << "NvAFX_UninitializeLogger() failed" << std::endl;
return false;
}
return true;
}
void ShowHelpAndExit(const char* bad_option) {
std::ostringstream oss;
if (bad_option) {
oss << "Error parsing \"" << bad_option << "\"" << std::endl;
}
std::cout << "Command Line Options:" << std::endl
<< "-c Config file" << std::endl;
std::cout << oss.str();
exit(0);
}
void ParseCommandLine(int argc, char* argv[], std::string* config_file) {
if (argc == 1) {
ShowHelpAndExit(nullptr);
}
for (int i = 1; i < argc; i++) {
if (!strcasecmp(argv[i], "-h")) {
ShowHelpAndExit(nullptr);
}
if (!strcasecmp(argv[i], "-c")) {
if (++i == argc || !config_file->empty()) {
ShowHelpAndExit("-f");
}
config_file->assign(argv[i]);
continue;
}
ShowHelpAndExit(argv[i]);
}
}
int main(int argc, char *argv[]) {
std::string config_file;
ParseCommandLine(argc, argv, &config_file);
ConfigReader config_reader;
if (config_reader.Load(config_file) == false) {
std::cerr << "Config file load failed" << std::endl;
return -1;
}
EffectsDemoApp app;
if (app.run(config_reader)) { return 0; }
else { return -1; }
}
|