File size: 13,189 Bytes
04ae5ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
/*
* Copyright (c) 2019-2022, NVIDIA Corporation. All rights reserved.
*
* NVIDIA Corporation and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA Corporation is strictly prohibited.
*/
#define _CRT_SECURE_NO_DEPRECATE
#include <sys/stat.h>
#include <cstdint>
#include <fstream>
#include <map>
#include <memory>
#include <sstream>
#include "wave.hpp"
#ifndef ENABLE_PERF_DUMP
#include <iostream>
#endif
#ifdef _WIN32
#include <io.h>
#include <Shlwapi.h>
#pragma comment(lib, "Shlwapi.lib")
#else
#include <unistd.h>
#endif
#include "waveReadWrite.hpp"
// #include <misc.hpp>
const float * CWaveFileRead::GetFloatPCMData() {
int8_t* audioDataPtr = reinterpret_cast<int8_t*>(m_WaveData.get());
if (m_floatWaveData.size())
return m_floatWaveData.data();
m_floatWaveData.resize(m_nNumSamples);
float* outputWaveData = m_floatWaveData.data();
if (m_WaveFormatEx.wFormatTag == WAVE_FORMAT_IEEE_FLOAT) {
memcpy(outputWaveData, audioDataPtr, m_nNumSamples * sizeof(float));
return outputWaveData;
}
for (uint32_t i = 0; i < m_nNumSamples; i++) {
switch (m_WaveFormatEx.wBitsPerSample) {
case 8: {
uint8_t audioSample = *(reinterpret_cast<uint8_t*>(audioDataPtr));
outputWaveData[i] = (audioSample - 128) / 128.0f;
}
break;
case 16: {
int16_t audioSample = *(reinterpret_cast<int16_t*>(audioDataPtr));
outputWaveData[i] = audioSample / 32768.0f;
}
break;
case 24: {
int32_t audioSample = *(reinterpret_cast<int32_t*>(audioDataPtr));
uint8_t data0 = audioSample & 0x000000ff;
uint8_t data1 = static_cast<uint8_t>((audioSample & 0x0000ff00) >> 8);
uint8_t data2 = static_cast<uint8_t>((audioSample & 0x00ff0000) >> 16);
int32_t Value = ((data2 << 24) | (data1 << 16) | (data0 << 8)) >> 8;
outputWaveData[i] = Value / 8388608.0f;
}
break;
case 32: {
int32_t audioSample = *(reinterpret_cast<int32_t*>(audioDataPtr));
outputWaveData[i] = audioSample / 2147483648.0f;
}
break;
}
audioDataPtr += m_WaveFormatEx.nBlockAlign;
}
return outputWaveData;
}
const float * CWaveFileRead::GetFloatPCMDataAligned(int alignSamples) {
if (!GetFloatPCMData())
return nullptr;
int totalAlignedSamples;
if (!(m_nNumSamples % alignSamples))
totalAlignedSamples = m_nNumSamples;
else
totalAlignedSamples = m_nNumSamples + (alignSamples - (m_nNumSamples % alignSamples));
m_floatWaveDataAligned.reset(new float[totalAlignedSamples]());
for (uint32_t i = 0; i < m_nNumSamples; i++)
m_floatWaveDataAligned[i] = m_floatWaveData[i];
m_NumAlignedSamples = totalAlignedSamples;
return m_floatWaveDataAligned.get();
}
int CWaveFileRead::GetBitsPerSample() {
if (m_WaveFormatEx.wBitsPerSample == 0)
assert(0);
return m_WaveFormatEx.wBitsPerSample;
}
const RiffChunk* CWaveFileRead::FindChunk(const uint8_t* data, size_t sizeBytes, uint32_t fourcc) {
if (!data)
return nullptr;
const uint8_t* ptr = data;
const uint8_t* end = data + sizeBytes;
while (end > (ptr + sizeof(RiffChunk))) {
const RiffChunk* header = reinterpret_cast<const RiffChunk*>(ptr);
if (header->chunkId == fourcc)
return header;
ptr += (header->chunkSize + sizeof(RiffChunk));
}
return nullptr;
}
CWaveFileRead::CWaveFileRead(std::string wavFile)
: m_wavFile(wavFile)
, m_nNumSamples(0)
, validFile(false)
, m_WaveDataSize(0)
, m_NumAlignedSamples(0) {
memset(&m_WaveFormatEx, 0, sizeof(m_WaveFormatEx));
#ifdef __linux__
if (access(m_wavFile.c_str(), R_OK) == 0)
#else
if (PathFileExistsA(m_wavFile.c_str()))
#endif
{
if (readPCM(m_wavFile.c_str()) == 0)
validFile = true;
}
}
inline bool loadFile(std::string const& infilename, std::string* outData) {
std::string result;
std::string filename = infilename;
errno = 0;
std::ifstream stream(filename.c_str(), std::ios::binary | std::ios::in);
if (!stream.is_open()) {
return false;
}
stream.seekg(0, std::ios::end);
result.reserve(stream.tellg());
stream.seekg(0, std::ios::beg);
result.assign(
(std::istreambuf_iterator<char>(stream)),
std::istreambuf_iterator<char>());
*outData = result;
return true;
}
inline std::string loadFile(const std::string& infilename) {
std::string result;
loadFile(infilename, &result);
return result;
}
int CWaveFileRead::readPCM(const char* szFileName) {
std::string fileData;
if (loadFile(std::string(szFileName), &fileData) != true) {
return -1;
}
const uint8_t* waveData = reinterpret_cast<const uint8_t*>(fileData.data());
size_t waveDataSize = fileData.length();
const uint8_t* waveEnd = waveData + waveDataSize;
// Locate RIFF 'WAVE'
const RiffChunk* riffChunk = FindChunk(waveData, waveDataSize, MAKEFOURCC('R', 'I', 'F', 'F'));
if (!riffChunk || riffChunk->chunkSize < 4) {
return -1;
}
const RiffHeader* riffHeader = reinterpret_cast<const RiffHeader*>(riffChunk);
if (riffHeader->fileTag != MAKEFOURCC('W', 'A', 'V', 'E')) {
return -1;
}
// Locate 'fmt '
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(riffHeader) + sizeof(RiffHeader);
if ((ptr + sizeof(RiffChunk)) > waveEnd) {
return -1;
}
const RiffChunk* fmtChunk = FindChunk(ptr, riffHeader->chunkSize, MAKEFOURCC('f', 'm', 't', ' '));
if (!fmtChunk || fmtChunk->chunkSize < sizeof(waveFormat_basic)) {
return -1;
}
ptr = reinterpret_cast<const uint8_t*>(fmtChunk) + sizeof(RiffChunk);
if (ptr + fmtChunk->chunkSize > waveEnd) {
return -1;
}
const waveFormat_basic_nopcm* wf = reinterpret_cast<const waveFormat_basic_nopcm*>(ptr);
if (!(wf->formatTag == WAVE_FORMAT_PCM || wf->formatTag == WAVE_FORMAT_IEEE_FLOAT)) {
if (wf->formatTag == WAVE_FORMAT_EXTENSIBLE) {
printf("WAVE_FORMAT_EXTENSIBLE is not supported. Please convert\n");
}
return -1;
}
ptr = reinterpret_cast<const uint8_t*>(riffHeader) + sizeof(RiffHeader);
if ((ptr + sizeof(RiffChunk)) > waveEnd) {
return -1;
}
const RiffChunk* dataChunk = FindChunk(ptr, riffChunk->chunkSize, MAKEFOURCC('d', 'a', 't', 'a'));
if (!dataChunk || !dataChunk->chunkSize) {
return -1;
}
ptr = reinterpret_cast<const uint8_t*>(dataChunk) + sizeof(RiffChunk);
if (ptr + dataChunk->chunkSize > waveEnd) {
return -1;
}
m_WaveData = std::unique_ptr<uint8_t[]>(new uint8_t[dataChunk->chunkSize]);
m_WaveDataSize = dataChunk->chunkSize;
memcpy(m_WaveData.get(), ptr, dataChunk->chunkSize);
if (wf->formatTag == WAVE_FORMAT_PCM) {
memcpy(&m_WaveFormatEx, reinterpret_cast<const waveFormat_basic*>(wf), sizeof(waveFormat_basic));
m_WaveFormatEx.cbSize = 0;
} else {
memcpy(&m_WaveFormatEx, reinterpret_cast<const waveFormat_ext*>(wf), sizeof(waveFormat_ext));
}
m_nNumSamples = m_WaveDataSize / (m_WaveFormatEx.nBlockAlign / m_WaveFormatEx.nChannels);
return 0;
}
CWaveFileWrite::CWaveFileWrite(std::string wavFile, uint32_t samplesPerSec, uint32_t numChannels,
uint16_t bitsPerSample, bool isFloat)
:m_wavFile(wavFile) {
wfx.wFormatTag = isFloat ? WAVE_FORMAT_IEEE_FLOAT : WAVE_FORMAT_PCM;
wfx.nChannels = static_cast<uint16_t>(numChannels);
wfx.nSamplesPerSec = samplesPerSec;
wfx.nBlockAlign = static_cast<uint16_t>((numChannels * bitsPerSample) / 8);
wfx.nAvgBytesPerSec = samplesPerSec * wfx.nBlockAlign;
wfx.wBitsPerSample = bitsPerSample;
wfx.cbSize = 0;
m_validState = true;
}
CWaveFileWrite::~CWaveFileWrite() {
if (m_commitDone == false)
commitFile();
if (m_fp) {
fclose(m_fp);
m_fp = nullptr;
}
}
bool CWaveFileWrite::initFile() {
if (!m_fp) {
errno = 0;
m_fp = fopen(m_wavFile.c_str(), "wb");
if (!m_fp)
return false;
int64_t offset = sizeof(RiffHeader) + sizeof(RiffChunk) +
sizeof(waveFormat_basic) + sizeof(RiffChunk);
if (fseek(m_fp, static_cast<long>(offset), SEEK_SET) != 0) {
fclose(m_fp);
m_fp = nullptr;
return false;
}
}
return true;
}
bool CWaveFileWrite::writeChunk(const void* data, uint32_t len) {
if (!m_validState) {
return false;
}
if (!initFile()) {
return false;
}
size_t written = fwrite(data, len, 1, m_fp);
if (written != 1)
return false;
m_cumulativeCount += len;
return true;
}
bool CWaveFileWrite::commitFile() {
if (!m_validState)
return false;
if (!m_fp)
return false;
// pull fp to start of file to write headers.
fseek(m_fp, 0, SEEK_SET);
// write the riff chunk header
uint32_t fmtChunkSize = sizeof(waveFormat_basic);
RiffHeader riffHeader;
riffHeader.chunkId = MAKEFOURCC('R', 'I', 'F', 'F');
riffHeader.chunkSize = 4 + sizeof(RiffChunk) + sizeof(RiffChunk) + fmtChunkSize + m_cumulativeCount;
riffHeader.fileTag = MAKEFOURCC('W', 'A', 'V', 'E');
if (fwrite(&riffHeader, sizeof(riffHeader), 1, m_fp) != 1)
return false;
// fmt riff chunk
RiffChunk fmtChunk;
fmtChunk.chunkId = MAKEFOURCC('f', 'm', 't', ' ');
fmtChunk.chunkSize = sizeof(waveFormat_basic);
if (fwrite(&fmtChunk, sizeof(RiffChunk), 1, m_fp) != 1)
return false;
// fixme: try using WAVEFORMATEX for size
if (fwrite(&wfx, sizeof(waveFormat_basic), 1, m_fp) != 1)
return false;
// data riff chunk
RiffChunk dataChunk;
dataChunk.chunkId = MAKEFOURCC('d', 'a', 't', 'a');
dataChunk.chunkSize = m_cumulativeCount;
if (fwrite(&dataChunk, sizeof(RiffChunk), 1, m_fp) != 1)
return false;
fclose(m_fp);
m_fp = nullptr;
m_commitDone = true;
m_validState = false;
return true;
}
std::vector<float>* CWaveFileRead::GetFloatVector() {
if (!m_floatWaveData.size()) (void) GetFloatPCMData();
return &m_floatWaveData;
}
std::map<std::string, std::unique_ptr<CWaveFileRead>> read_file_cache;
bool ReadWavFile(const std::string& filename, uint32_t expected_sample_rate,
std::vector<float>** data, unsigned* original_num_samples,std::vector<int>* file_end_offset,
int align_samples) {
std::vector<std::string> files;
const std::string kDelimiter = ";";
auto delim = filename.find(kDelimiter);
if (delim != std::string::npos) {
unsigned int start = 0;
do
{
files.push_back(filename.substr(start, delim - start));
start = delim + 1;
} while ((delim = filename.find(kDelimiter, delim+1)) != std::string::npos);
if (start < filename.length()) files.push_back(filename.substr(start));
} else {
files.push_back(filename);
}
*original_num_samples = 0;
int offset = 0;
std::vector<float>* ret = nullptr;
for (auto& file: files) {
CWaveFileRead *wave_file = nullptr;
auto cached_file = read_file_cache.find(file);
if (cached_file == read_file_cache.end()) {
wave_file = new CWaveFileRead(file);
read_file_cache.emplace(file, std::unique_ptr<CWaveFileRead>(wave_file));
} else {
wave_file = cached_file->second.get();
}
if (wave_file->isValid() == false) {
delete ret;
*data = nullptr;
return false;
}
#ifndef ENABLE_PERF_DUMP
std::cout << "Total number of samples: " << wave_file->GetNumSamples() << std::endl;
std::cout << "Size in bytes: " << wave_file->GetRawPCMDataSizeInBytes() << std::endl;
std::cout << "Sample rate: " << wave_file->GetSampleRate() << std::endl;
auto bits_per_sample = wave_file->GetBitsPerSample();
std::cout << "Bits/sample: " << bits_per_sample << std::endl;
#endif // ENABLE_PERF_DUMP
if (wave_file->GetSampleRate() != expected_sample_rate) {
std::cout << "Sample rate mismatch" << std::endl;
delete ret;
*data = nullptr;
return false;
}
if (wave_file->GetWaveFormat().nChannels != 1) {
std::cout << "Channel count needs to be 1" << std::endl;
delete ret;
*data = nullptr;
return false;
}
*original_num_samples += wave_file->GetNumSamples();
int num_samples;
if (align_samples != -1) {
uint32_t pad = align_samples - (wave_file->GetNumSamples() % align_samples);
num_samples = wave_file->GetNumSamples() + pad;
} else {
num_samples = wave_file->GetNumSamples();
}
if (file_end_offset) {
offset += num_samples;
file_end_offset->push_back(offset);
}
if (files.size() > 1) {
// If using reset, ignore cache
// Vector is not resized here, will be resized at end
auto local = wave_file->GetFloatVector();
if (!ret) {
ret = new std::vector<float>();
*data = ret;
}
ret->insert(ret->end(), local->begin(), local->end());
} else {
*data = wave_file->GetFloatVector();
// Align if using multiple inputs
(*data)->resize(num_samples, 0.f);
}
}
if (files.size() > 1 && align_samples != -1) {
// Align if using multiple inputs
uint32_t pad = ret->size() % align_samples;
if (pad) ret->resize(ret->size() + pad, 0.f);
}
return true;
}
|