File size: 7,868 Bytes
91670c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "bccAucKjnPHm"
},
"source": [
"### Dependencies and inputs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cSih95WFmwgi"
},
"outputs": [],
"source": [
"!pip -q install pydub\n",
"from google.colab import output\n",
"from base64 import b64decode, b64encode\n",
"from io import BytesIO\n",
"import numpy as np\n",
"from pydub import AudioSegment\n",
"from IPython.display import HTML, display\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import moviepy.editor as mpe\n",
"from matplotlib.animation import FuncAnimation, FFMpegWriter\n",
"import matplotlib\n",
"matplotlib.use('Agg')\n",
"\n",
"torch.set_num_threads(1)\n",
"\n",
"model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True)\n",
"\n",
"def int2float(sound):\n",
" abs_max = np.abs(sound).max()\n",
" sound = sound.astype('float32')\n",
" if abs_max > 0:\n",
" sound *= 1/32768\n",
" sound = sound.squeeze()\n",
" return sound\n",
"\n",
"AUDIO_HTML = \"\"\"\n",
"<script>\n",
"var my_div = document.createElement(\"DIV\");\n",
"var my_p = document.createElement(\"P\");\n",
"var my_btn = document.createElement(\"BUTTON\");\n",
"var t = document.createTextNode(\"Press to start recording\");\n",
"\n",
"my_btn.appendChild(t);\n",
"//my_p.appendChild(my_btn);\n",
"my_div.appendChild(my_btn);\n",
"document.body.appendChild(my_div);\n",
"\n",
"var base64data = 0;\n",
"var reader;\n",
"var recorder, gumStream;\n",
"var recordButton = my_btn;\n",
"\n",
"var handleSuccess = function(stream) {\n",
" gumStream = stream;\n",
" var options = {\n",
" //bitsPerSecond: 8000, //chrome seems to ignore, always 48k\n",
" mimeType : 'audio/webm;codecs=opus'\n",
" //mimeType : 'audio/webm;codecs=pcm'\n",
" }; \n",
" //recorder = new MediaRecorder(stream, options);\n",
" recorder = new MediaRecorder(stream);\n",
" recorder.ondataavailable = function(e) { \n",
" var url = URL.createObjectURL(e.data);\n",
" // var preview = document.createElement('audio');\n",
" // preview.controls = true;\n",
" // preview.src = url;\n",
" // document.body.appendChild(preview);\n",
"\n",
" reader = new FileReader();\n",
" reader.readAsDataURL(e.data); \n",
" reader.onloadend = function() {\n",
" base64data = reader.result;\n",
" //console.log(\"Inside FileReader:\" + base64data);\n",
" }\n",
" };\n",
" recorder.start();\n",
" };\n",
"\n",
"recordButton.innerText = \"Recording... press to stop\";\n",
"\n",
"navigator.mediaDevices.getUserMedia({audio: true}).then(handleSuccess);\n",
"\n",
"\n",
"function toggleRecording() {\n",
" if (recorder && recorder.state == \"recording\") {\n",
" recorder.stop();\n",
" gumStream.getAudioTracks()[0].stop();\n",
" recordButton.innerText = \"Saving recording...\"\n",
" }\n",
"}\n",
"\n",
"// https://stackoverflow.com/a/951057\n",
"function sleep(ms) {\n",
" return new Promise(resolve => setTimeout(resolve, ms));\n",
"}\n",
"\n",
"var data = new Promise(resolve=>{\n",
"//recordButton.addEventListener(\"click\", toggleRecording);\n",
"recordButton.onclick = ()=>{\n",
"toggleRecording()\n",
"\n",
"sleep(2000).then(() => {\n",
" // wait 2000ms for the data to be available...\n",
" // ideally this should use something like await...\n",
" //console.log(\"Inside data:\" + base64data)\n",
" resolve(base64data.toString())\n",
"\n",
"});\n",
"\n",
"}\n",
"});\n",
" \n",
"</script>\n",
"\"\"\"\n",
"\n",
"def record(sec=10):\n",
" display(HTML(AUDIO_HTML))\n",
" s = output.eval_js(\"data\")\n",
" b = b64decode(s.split(',')[1])\n",
" audio = AudioSegment.from_file(BytesIO(b))\n",
" audio.export('test.mp3', format='mp3')\n",
" audio = audio.set_channels(1)\n",
" audio = audio.set_frame_rate(16000)\n",
" audio_float = int2float(np.array(audio.get_array_of_samples()))\n",
" audio_tens = torch.tensor(audio_float )\n",
" return audio_tens\n",
"\n",
"def make_animation(probs, audio_duration, interval=40):\n",
" fig = plt.figure(figsize=(16, 9))\n",
" ax = plt.axes(xlim=(0, audio_duration), ylim=(0, 1.02))\n",
" line, = ax.plot([], [], lw=2)\n",
" x = [i / 16000 * 512 for i in range(len(probs))]\n",
" plt.xlabel('Time, seconds', fontsize=16)\n",
" plt.ylabel('Speech Probability', fontsize=16)\n",
"\n",
" def init():\n",
" plt.fill_between(x, probs, color='#064273')\n",
" line.set_data([], [])\n",
" line.set_color('#990000')\n",
" return line,\n",
"\n",
" def animate(i):\n",
" x = i * interval / 1000 - 0.04\n",
" y = np.linspace(0, 1.02, 2)\n",
" \n",
" line.set_data(x, y)\n",
" line.set_color('#990000')\n",
" return line,\n",
"\n",
" anim = FuncAnimation(fig, animate, init_func=init, interval=interval, save_count=audio_duration / (interval / 1000))\n",
"\n",
" f = r\"animation.mp4\" \n",
" writervideo = FFMpegWriter(fps=1000/interval) \n",
" anim.save(f, writer=writervideo)\n",
" plt.close('all')\n",
"\n",
"def combine_audio(vidname, audname, outname, fps=25): \n",
" my_clip = mpe.VideoFileClip(vidname, verbose=False)\n",
" audio_background = mpe.AudioFileClip(audname)\n",
" final_clip = my_clip.set_audio(audio_background)\n",
" final_clip.write_videofile(outname,fps=fps,verbose=False)\n",
"\n",
"def record_make_animation():\n",
" tensor = record()\n",
"\n",
" print('Calculating probabilities...')\n",
" speech_probs = []\n",
" window_size_samples = 512\n",
" for i in range(0, len(tensor), window_size_samples):\n",
" if len(tensor[i: i+ window_size_samples]) < window_size_samples:\n",
" break\n",
" speech_prob = model(tensor[i: i+ window_size_samples], 16000).item()\n",
" speech_probs.append(speech_prob)\n",
" model.reset_states()\n",
" print('Making animation...')\n",
" make_animation(speech_probs, len(tensor) / 16000)\n",
"\n",
" print('Merging your voice with animation...')\n",
" combine_audio('animation.mp4', 'test.mp3', 'merged.mp4')\n",
" print('Done!')\n",
" mp4 = open('merged.mp4','rb').read()\n",
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
" display(HTML(\"\"\"\n",
" <video width=800 controls>\n",
" <source src=\"%s\" type=\"video/mp4\">\n",
" </video>\n",
" \"\"\" % data_url))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IFVs3GvTnpB1"
},
"source": [
"## Record example"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5EBjrTwiqAaQ"
},
"outputs": [],
"source": [
"record_make_animation()"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [
"bccAucKjnPHm"
],
"name": "Untitled2.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|