File size: 15,849 Bytes
91670c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#include <iostream>
#include <vector>
#include <sstream>
#include <cstring>
#include <limits>
#include <chrono>
#include <memory>
#include <string>
#include <stdexcept>
#include <iostream>
#include <string>
#include "onnxruntime_cxx_api.h"
#include "wav.h"
#include <cstdio>
#include <cstdarg>
#if __cplusplus < 201703L
#include <memory>
#endif
//#define __DEBUG_SPEECH_PROB___
class timestamp_t
{
public:
int start;
int end;
// default + parameterized constructor
timestamp_t(int start = -1, int end = -1)
: start(start), end(end)
{
};
// assignment operator modifies object, therefore non-const
timestamp_t& operator=(const timestamp_t& a)
{
start = a.start;
end = a.end;
return *this;
};
// equality comparison. doesn't modify object. therefore const.
bool operator==(const timestamp_t& a) const
{
return (start == a.start && end == a.end);
};
std::string c_str()
{
//return std::format("timestamp {:08d}, {:08d}", start, end);
return format("{start:%08d,end:%08d}", start, end);
};
private:
std::string format(const char* fmt, ...)
{
char buf[256];
va_list args;
va_start(args, fmt);
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
va_end(args);
if (r < 0)
// conversion failed
return {};
const size_t len = r;
if (len < sizeof buf)
// we fit in the buffer
return { buf, len };
#if __cplusplus >= 201703L
// C++17: Create a string and write to its underlying array
std::string s(len, '\0');
va_start(args, fmt);
std::vsnprintf(s.data(), len + 1, fmt, args);
va_end(args);
return s;
#else
// C++11 or C++14: We need to allocate scratch memory
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
va_start(args, fmt);
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
va_end(args);
return { vbuf.get(), len };
#endif
};
};
class VadIterator
{
private:
// OnnxRuntime resources
Ort::Env env;
Ort::SessionOptions session_options;
std::shared_ptr<Ort::Session> session = nullptr;
Ort::AllocatorWithDefaultOptions allocator;
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
private:
void init_engine_threads(int inter_threads, int intra_threads)
{
// The method should be called in each thread/proc in multi-thread/proc work
session_options.SetIntraOpNumThreads(intra_threads);
session_options.SetInterOpNumThreads(inter_threads);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
};
void init_onnx_model(const std::wstring& model_path)
{
// Init threads = 1 for
init_engine_threads(1, 1);
// Load model
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
};
void reset_states()
{
// Call reset before each audio start
std::memset(_h.data(), 0.0f, _h.size() * sizeof(float));
std::memset(_c.data(), 0.0f, _c.size() * sizeof(float));
triggered = false;
temp_end = 0;
current_sample = 0;
prev_end = next_start = 0;
speeches.clear();
current_speech = timestamp_t();
};
void predict(const std::vector<float> &data)
{
// Infer
// Create ort tensors
input.assign(data.begin(), data.end());
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
memory_info, input.data(), input.size(), input_node_dims, 2);
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
Ort::Value h_ort = Ort::Value::CreateTensor<float>(
memory_info, _h.data(), _h.size(), hc_node_dims, 3);
Ort::Value c_ort = Ort::Value::CreateTensor<float>(
memory_info, _c.data(), _c.size(), hc_node_dims, 3);
// Clear and add inputs
ort_inputs.clear();
ort_inputs.emplace_back(std::move(input_ort));
ort_inputs.emplace_back(std::move(sr_ort));
ort_inputs.emplace_back(std::move(h_ort));
ort_inputs.emplace_back(std::move(c_ort));
// Infer
ort_outputs = session->Run(
Ort::RunOptions{nullptr},
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
output_node_names.data(), output_node_names.size());
// Output probability & update h,c recursively
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
float *hn = ort_outputs[1].GetTensorMutableData<float>();
std::memcpy(_h.data(), hn, size_hc * sizeof(float));
float *cn = ort_outputs[2].GetTensorMutableData<float>();
std::memcpy(_c.data(), cn, size_hc * sizeof(float));
// Push forward sample index
current_sample += window_size_samples;
// Reset temp_end when > threshold
if ((speech_prob >= threshold))
{
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
if (temp_end != 0)
{
temp_end = 0;
if (next_start < prev_end)
next_start = current_sample - window_size_samples;
}
if (triggered == false)
{
triggered = true;
current_speech.start = current_sample - window_size_samples;
}
return;
}
if (
(triggered == true)
&& ((current_sample - current_speech.start) > max_speech_samples)
) {
if (prev_end > 0) {
current_speech.end = prev_end;
speeches.push_back(current_speech);
current_speech = timestamp_t();
// previously reached silence(< neg_thres) and is still not speech(< thres)
if (next_start < prev_end)
triggered = false;
else{
current_speech.start = next_start;
}
prev_end = 0;
next_start = 0;
temp_end = 0;
}
else{
current_speech.end = current_sample;
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
return;
}
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
{
if (triggered) {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
}
else {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
}
return;
}
// 4) End
if ((speech_prob < (threshold - 0.15)))
{
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
if (triggered == true)
{
if (temp_end == 0)
{
temp_end = current_sample;
}
if (current_sample - temp_end > min_silence_samples_at_max_speech)
prev_end = temp_end;
// a. silence < min_slience_samples, continue speaking
if ((current_sample - temp_end) < min_silence_samples)
{
}
// b. silence >= min_slience_samples, end speaking
else
{
current_speech.end = temp_end;
if (current_speech.end - current_speech.start > min_speech_samples)
{
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
}
}
else {
// may first windows see end state.
}
return;
}
};
public:
void process(const std::vector<float>& input_wav)
{
reset_states();
audio_length_samples = input_wav.size();
for (int j = 0; j < audio_length_samples; j += window_size_samples)
{
if (j + window_size_samples > audio_length_samples)
break;
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
predict(r);
}
if (current_speech.start >= 0) {
current_speech.end = audio_length_samples;
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
};
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
process(input_wav);
collect_chunks(input_wav, output_wav);
}
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
output_wav.clear();
for (int i = 0; i < speeches.size(); i++) {
#ifdef __DEBUG_SPEECH_PROB___
std::cout << speeches[i].c_str() << std::endl;
#endif //#ifdef __DEBUG_SPEECH_PROB___
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
}
};
const std::vector<timestamp_t> get_speech_timestamps() const
{
return speeches;
}
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
output_wav.clear();
int current_start = 0;
for (int i = 0; i < speeches.size(); i++) {
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
current_start = speeches[i].end;
}
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
};
private:
// model config
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
int sample_rate; //Assign when init support 16000 or 8000
int sr_per_ms; // Assign when init, support 8 or 16
float threshold;
int min_silence_samples; // sr_per_ms * #ms
int min_silence_samples_at_max_speech; // sr_per_ms * #98
int min_speech_samples; // sr_per_ms * #ms
float max_speech_samples;
int speech_pad_samples; // usually a
int audio_length_samples;
// model states
bool triggered = false;
unsigned int temp_end = 0;
unsigned int current_sample = 0;
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
int prev_end;
int next_start = 0;
//Output timestamp
std::vector<timestamp_t> speeches;
timestamp_t current_speech;
// Onnx model
// Inputs
std::vector<Ort::Value> ort_inputs;
std::vector<const char *> input_node_names = {"input", "sr", "h", "c"};
std::vector<float> input;
std::vector<int64_t> sr;
unsigned int size_hc = 2 * 1 * 64; // It's FIXED.
std::vector<float> _h;
std::vector<float> _c;
int64_t input_node_dims[2] = {};
const int64_t sr_node_dims[1] = {1};
const int64_t hc_node_dims[3] = {2, 1, 64};
// Outputs
std::vector<Ort::Value> ort_outputs;
std::vector<const char *> output_node_names = {"output", "hn", "cn"};
public:
// Construction
VadIterator(const std::wstring ModelPath,
int Sample_rate = 16000, int windows_frame_size = 64,
float Threshold = 0.5, int min_silence_duration_ms = 0,
int speech_pad_ms = 64, int min_speech_duration_ms = 64,
float max_speech_duration_s = std::numeric_limits<float>::infinity())
{
init_onnx_model(ModelPath);
threshold = Threshold;
sample_rate = Sample_rate;
sr_per_ms = sample_rate / 1000;
window_size_samples = windows_frame_size * sr_per_ms;
min_speech_samples = sr_per_ms * min_speech_duration_ms;
speech_pad_samples = sr_per_ms * speech_pad_ms;
max_speech_samples = (
sample_rate * max_speech_duration_s
- window_size_samples
- 2 * speech_pad_samples
);
min_silence_samples = sr_per_ms * min_silence_duration_ms;
min_silence_samples_at_max_speech = sr_per_ms * 98;
input.resize(window_size_samples);
input_node_dims[0] = 1;
input_node_dims[1] = window_size_samples;
_h.resize(size_hc);
_c.resize(size_hc);
sr.resize(1);
sr[0] = sample_rate;
};
};
int main()
{
std::vector<timestamp_t> stamps;
// Read wav
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
std::vector<float> input_wav(wav_reader.num_samples());
std::vector<float> output_wav;
for (int i = 0; i < wav_reader.num_samples(); i++)
{
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
}
// ===== Test configs =====
std::wstring path = L"silero_vad.onnx";
VadIterator vad(path);
// ==============================================
// ==== = Example 1 of full function =====
// ==============================================
vad.process(input_wav);
// 1.a get_speech_timestamps
stamps = vad.get_speech_timestamps();
for (int i = 0; i < stamps.size(); i++) {
std::cout << stamps[i].c_str() << std::endl;
}
// 1.b collect_chunks output wav
vad.collect_chunks(input_wav, output_wav);
// 1.c drop_chunks output wav
vad.drop_chunks(input_wav, output_wav);
// ==============================================
// ===== Example 2 of simple full function =====
// ==============================================
vad.process(input_wav, output_wav);
stamps = vad.get_speech_timestamps();
for (int i = 0; i < stamps.size(); i++) {
std::cout << stamps[i].c_str() << std::endl;
}
// ==============================================
// ===== Example 3 of full function =====
// ==============================================
for(int i = 0; i<2; i++)
vad.process(input_wav, output_wav);
}
|