File size: 8,534 Bytes
91670c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import collections, queue
import numpy as np
import pyaudio
import webrtcvad
from halo import Halo
import torch
import torchaudio

class Audio(object):
    """Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""

    FORMAT = pyaudio.paInt16
    # Network/VAD rate-space
    RATE_PROCESS = 16000
    CHANNELS = 1
    BLOCKS_PER_SECOND = 50

    def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS):
        def proxy_callback(in_data, frame_count, time_info, status):
            #pylint: disable=unused-argument
            callback(in_data)
            return (None, pyaudio.paContinue)
        if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
        self.buffer_queue = queue.Queue()
        self.device = device
        self.input_rate = input_rate
        self.sample_rate = self.RATE_PROCESS
        self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
        self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
        self.pa = pyaudio.PyAudio()

        kwargs = {
            'format': self.FORMAT,
            'channels': self.CHANNELS,
            'rate': self.input_rate,
            'input': True,
            'frames_per_buffer': self.block_size_input,
            'stream_callback': proxy_callback,
        }

        self.chunk = None
        # if not default device
        if self.device:
            kwargs['input_device_index'] = self.device

        self.stream = self.pa.open(**kwargs)
        self.stream.start_stream()

    def read(self):
        """Return a block of audio data, blocking if necessary."""
        return self.buffer_queue.get()

    def destroy(self):
        self.stream.stop_stream()
        self.stream.close()
        self.pa.terminate()

    frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)


class VADAudio(Audio):
    """Filter & segment audio with voice activity detection."""

    def __init__(self, aggressiveness=3, device=None, input_rate=None):
        super().__init__(device=device, input_rate=input_rate)
        self.vad = webrtcvad.Vad(aggressiveness)

    def frame_generator(self):
        """Generator that yields all audio frames from microphone."""
        if self.input_rate == self.RATE_PROCESS:
            while True:
                yield self.read()
        else:
            raise Exception("Resampling required")

    def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
        """Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
            Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
            Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
                      |---utterence---|        |---utterence---|
        """
        if frames is None: frames = self.frame_generator()
        num_padding_frames = padding_ms // self.frame_duration_ms
        ring_buffer = collections.deque(maxlen=num_padding_frames)
        triggered = False

        for frame in frames:
            if len(frame) < 640:
                return

            is_speech = self.vad.is_speech(frame, self.sample_rate)

            if not triggered:
                ring_buffer.append((frame, is_speech))
                num_voiced = len([f for f, speech in ring_buffer if speech])
                if num_voiced > ratio * ring_buffer.maxlen:
                    triggered = True
                    for f, s in ring_buffer:
                        yield f
                    ring_buffer.clear()

            else:
                yield frame
                ring_buffer.append((frame, is_speech))
                num_unvoiced = len([f for f, speech in ring_buffer if not speech])
                if num_unvoiced > ratio * ring_buffer.maxlen:
                    triggered = False
                    yield None
                    ring_buffer.clear()

def main(ARGS):
    # Start audio with VAD
    vad_audio = VADAudio(aggressiveness=ARGS.webRTC_aggressiveness,
                         device=ARGS.device,
                         input_rate=ARGS.rate)

    print("Listening (ctrl-C to exit)...")
    frames = vad_audio.vad_collector()

    # load silero VAD
    torchaudio.set_audio_backend("soundfile")
    model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
                                    model=ARGS.silaro_model_name,
                                    force_reload= ARGS.reload)
    (get_speech_ts,_,_, _,_, _, _) = utils


    # Stream from microphone to DeepSpeech using VAD
    spinner = None
    if not ARGS.nospinner:
        spinner = Halo(spinner='line')
    wav_data = bytearray()
    for frame in frames:
        if frame is not None:
            if spinner: spinner.start()

            wav_data.extend(frame)
        else:
            if spinner: spinner.stop()
            print("webRTC has detected a possible speech")

            newsound= np.frombuffer(wav_data,np.int16)
            audio_float32=Int2Float(newsound)
            time_stamps =get_speech_ts(audio_float32, model,num_steps=ARGS.num_steps,trig_sum=ARGS.trig_sum,neg_trig_sum=ARGS.neg_trig_sum,
                                    num_samples_per_window=ARGS.num_samples_per_window,min_speech_samples=ARGS.min_speech_samples,
                                    min_silence_samples=ARGS.min_silence_samples)

            if(len(time_stamps)>0):
                print("silero VAD has detected a possible speech")
            else:
                print("silero VAD has detected a noise")
            print()
            wav_data = bytearray()


def Int2Float(sound):
    _sound = np.copy(sound)  #
    abs_max = np.abs(_sound).max()
    _sound = _sound.astype('float32')
    if abs_max > 0:
        _sound *= 1/abs_max
    audio_float32 = torch.from_numpy(_sound.squeeze())
    return audio_float32

if __name__ == '__main__':
    DEFAULT_SAMPLE_RATE = 16000

    import argparse
    parser = argparse.ArgumentParser(description="Stream from microphone to webRTC and silero VAD")

    parser.add_argument('-v', '--webRTC_aggressiveness', type=int, default=3,
                        help="Set aggressiveness of webRTC: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
    parser.add_argument('--nospinner', action='store_true',
                        help="Disable spinner")
    parser.add_argument('-d', '--device', type=int, default=None,
                        help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")

    parser.add_argument('-name', '--silaro_model_name', type=str, default="silero_vad",
                        help="select the name of the model. You can select between 'silero_vad',''silero_vad_micro','silero_vad_micro_8k','silero_vad_mini','silero_vad_mini_8k'")
    parser.add_argument('--reload', action='store_true',help="download the last version of the silero vad")

    parser.add_argument('-ts', '--trig_sum', type=float, default=0.25,
                        help="overlapping windows are used for each audio chunk, trig sum defines average probability among those windows for switching into triggered state (speech state)")

    parser.add_argument('-nts', '--neg_trig_sum', type=float, default=0.07,
                        help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")

    parser.add_argument('-N', '--num_steps', type=int, default=8,
                        help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)")

    parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
                        help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")

    parser.add_argument('-msps', '--min_speech_samples', type=int, default=10000,
                        help="minimum speech chunk duration in samples")

    parser.add_argument('-msis', '--min_silence_samples', type=int, default=500,
                        help=" minimum silence duration in samples between to separate speech chunks")
    ARGS = parser.parse_args()
    ARGS.rate=DEFAULT_SAMPLE_RATE
    main(ARGS)