File size: 5,058 Bytes
91670c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "heading_collapsed": true,
    "id": "62A6F_072Fwq"
   },
   "source": [
    "## Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "hidden": true,
    "id": "5w5AkskZ2Fwr"
   },
   "outputs": [],
   "source": [
    "#@title Install and Import Dependencies\n",
    "\n",
    "# this assumes that you have a relevant version of PyTorch installed\n",
    "!pip install -q torchaudio\n",
    "\n",
    "SAMPLING_RATE = 16000\n",
    "\n",
    "import torch\n",
    "torch.set_num_threads(1)\n",
    "\n",
    "from IPython.display import Audio\n",
    "from pprint import pprint\n",
    "# download example\n",
    "torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "pSifus5IilRp"
   },
   "outputs": [],
   "source": [
    "USE_ONNX = False # change this to True if you want to test onnx model\n",
    "if USE_ONNX:\n",
    "    !pip install -q onnxruntime\n",
    "  \n",
    "model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
    "                              model='silero_vad',\n",
    "                              force_reload=True,\n",
    "                              onnx=USE_ONNX)\n",
    "\n",
    "(get_speech_timestamps,\n",
    " save_audio,\n",
    " read_audio,\n",
    " VADIterator,\n",
    " collect_chunks) = utils"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "fXbbaUO3jsrw"
   },
   "source": [
    "## Full Audio"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "RAfJPb_a-Auj"
   },
   "source": [
    "**Speech timestapms from full audio**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "aI_eydBPjsrx"
   },
   "outputs": [],
   "source": [
    "wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
    "# get speech timestamps from full audio file\n",
    "speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLING_RATE)\n",
    "pprint(speech_timestamps)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "OuEobLchjsry"
   },
   "outputs": [],
   "source": [
    "# merge all speech chunks to one audio\n",
    "save_audio('only_speech.wav',\n",
    "           collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE) \n",
    "Audio('only_speech.wav')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "iDKQbVr8jsry"
   },
   "source": [
    "## Stream imitation example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "q-lql_2Wjsry"
   },
   "outputs": [],
   "source": [
    "## using VADIterator class\n",
    "\n",
    "vad_iterator = VADIterator(model)\n",
    "wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
    "\n",
    "window_size_samples = 1536 # number of samples in a single audio chunk\n",
    "for i in range(0, len(wav), window_size_samples):\n",
    "    chunk = wav[i: i+ window_size_samples]\n",
    "    if len(chunk) < window_size_samples:\n",
    "      break\n",
    "    speech_dict = vad_iterator(chunk, return_seconds=True)\n",
    "    if speech_dict:\n",
    "        print(speech_dict, end=' ')\n",
    "vad_iterator.reset_states() # reset model states after each audio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "BX3UgwwB2Fwv"
   },
   "outputs": [],
   "source": [
    "## just probabilities\n",
    "\n",
    "wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
    "speech_probs = []\n",
    "window_size_samples = 1536\n",
    "for i in range(0, len(wav), window_size_samples):\n",
    "    chunk = wav[i: i+ window_size_samples]\n",
    "    if len(chunk) < window_size_samples:\n",
    "      break\n",
    "    speech_prob = model(chunk, SAMPLING_RATE).item()\n",
    "    speech_probs.append(speech_prob)\n",
    "vad_iterator.reset_states() # reset model states after each audio\n",
    "\n",
    "print(speech_probs[:10]) # first 10 chunks predicts"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "name": "silero-vad.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}