{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "bccAucKjnPHm"
},
"source": [
"### Dependencies and inputs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cSih95WFmwgi"
},
"outputs": [],
"source": [
"!pip -q install pydub\n",
"from google.colab import output\n",
"from base64 import b64decode, b64encode\n",
"from io import BytesIO\n",
"import numpy as np\n",
"from pydub import AudioSegment\n",
"from IPython.display import HTML, display\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import moviepy.editor as mpe\n",
"from matplotlib.animation import FuncAnimation, FFMpegWriter\n",
"import matplotlib\n",
"matplotlib.use('Agg')\n",
"\n",
"torch.set_num_threads(1)\n",
"\n",
"model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True)\n",
"\n",
"def int2float(sound):\n",
" abs_max = np.abs(sound).max()\n",
" sound = sound.astype('float32')\n",
" if abs_max > 0:\n",
" sound *= 1/32768\n",
" sound = sound.squeeze()\n",
" return sound\n",
"\n",
"AUDIO_HTML = \"\"\"\n",
"\n",
"\"\"\"\n",
"\n",
"def record(sec=10):\n",
" display(HTML(AUDIO_HTML))\n",
" s = output.eval_js(\"data\")\n",
" b = b64decode(s.split(',')[1])\n",
" audio = AudioSegment.from_file(BytesIO(b))\n",
" audio.export('test.mp3', format='mp3')\n",
" audio = audio.set_channels(1)\n",
" audio = audio.set_frame_rate(16000)\n",
" audio_float = int2float(np.array(audio.get_array_of_samples()))\n",
" audio_tens = torch.tensor(audio_float )\n",
" return audio_tens\n",
"\n",
"def make_animation(probs, audio_duration, interval=40):\n",
" fig = plt.figure(figsize=(16, 9))\n",
" ax = plt.axes(xlim=(0, audio_duration), ylim=(0, 1.02))\n",
" line, = ax.plot([], [], lw=2)\n",
" x = [i / 16000 * 512 for i in range(len(probs))]\n",
" plt.xlabel('Time, seconds', fontsize=16)\n",
" plt.ylabel('Speech Probability', fontsize=16)\n",
"\n",
" def init():\n",
" plt.fill_between(x, probs, color='#064273')\n",
" line.set_data([], [])\n",
" line.set_color('#990000')\n",
" return line,\n",
"\n",
" def animate(i):\n",
" x = i * interval / 1000 - 0.04\n",
" y = np.linspace(0, 1.02, 2)\n",
" \n",
" line.set_data(x, y)\n",
" line.set_color('#990000')\n",
" return line,\n",
"\n",
" anim = FuncAnimation(fig, animate, init_func=init, interval=interval, save_count=audio_duration / (interval / 1000))\n",
"\n",
" f = r\"animation.mp4\" \n",
" writervideo = FFMpegWriter(fps=1000/interval) \n",
" anim.save(f, writer=writervideo)\n",
" plt.close('all')\n",
"\n",
"def combine_audio(vidname, audname, outname, fps=25): \n",
" my_clip = mpe.VideoFileClip(vidname, verbose=False)\n",
" audio_background = mpe.AudioFileClip(audname)\n",
" final_clip = my_clip.set_audio(audio_background)\n",
" final_clip.write_videofile(outname,fps=fps,verbose=False)\n",
"\n",
"def record_make_animation():\n",
" tensor = record()\n",
"\n",
" print('Calculating probabilities...')\n",
" speech_probs = []\n",
" window_size_samples = 512\n",
" for i in range(0, len(tensor), window_size_samples):\n",
" if len(tensor[i: i+ window_size_samples]) < window_size_samples:\n",
" break\n",
" speech_prob = model(tensor[i: i+ window_size_samples], 16000).item()\n",
" speech_probs.append(speech_prob)\n",
" model.reset_states()\n",
" print('Making animation...')\n",
" make_animation(speech_probs, len(tensor) / 16000)\n",
"\n",
" print('Merging your voice with animation...')\n",
" combine_audio('animation.mp4', 'test.mp3', 'merged.mp4')\n",
" print('Done!')\n",
" mp4 = open('merged.mp4','rb').read()\n",
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
" display(HTML(\"\"\"\n",
" \n",
" \"\"\" % data_url))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IFVs3GvTnpB1"
},
"source": [
"## Record example"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5EBjrTwiqAaQ"
},
"outputs": [],
"source": [
"record_make_animation()"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [
"bccAucKjnPHm"
],
"name": "Untitled2.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}